Zhao Yao, Li Qing, Liu Zhan, Fan Lukai, Li Jiaojiao, Ma Zhipeng, Qin Xiujuan, Shao Guangjie
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Hebei Key Laboratory Of Heavy Metal Deep-Remediation in Water and Resource Reuse, College Of Environmental And Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):37967-37976. doi: 10.1021/acsami.0c05244. Epub 2020 Aug 13.
The ultrahigh specific capacity of lithium (Li) metal makes it possible to serve as the ultimate candidate for an anode in high-energy density secondary batteries, whereas the safety hazards caused by Li dendrite growth severely hamper the commercialization process of a lithium metal anode. Here, we propose a 3D conductive skeleton by anchoring MXene on Cu foam (MXene@CF) to significantly improve the electrochemical Li plating/stripping behavior. Li metal tends to nucleate uniformly and grow horizontally along the MXene nanosheets under the strong Coulomb interaction between adsorbed Li and MXene. Moreover, the abundant fluorine termination groups in MXene contribute to forming a stable fluorinated solid electrolyte interphase (SEI) and thus effectively regulating the Li deposition behaviors and prolonging the stability of the Li metal anode. Therefore, the MXene@CF skeleton maintains a high Coulombic efficiency (CE) of 98.5% after 200 cycles at 1 mA cm. The MXene@CF-based symmetric cells can run for more than 1000 h without intense voltage fluctuation and demonstrates remarkable deep charge/discharge abilities. The MXene@CF-Li|LiFePO full cell exhibits outstanding long-term cycling stability (95% capacity retention after 300 cycles). Our research suggests that MXene could effectively regulate the Li plating behavior that might provide a feasible solution for a dendrite-free Li anode.
锂(Li)金属的超高比容量使其成为高能量密度二次电池负极的最终候选材料,然而锂枝晶生长所带来的安全隐患严重阻碍了锂金属负极的商业化进程。在此,我们通过将MXene锚定在泡沫铜(MXene@CF)上提出了一种三维导电骨架,以显著改善锂的电化学沉积/溶解行为。在吸附的锂与MXene之间的强库仑相互作用下,锂金属倾向于均匀成核并沿着MXene纳米片水平生长。此外,MXene中丰富的氟端基有助于形成稳定的氟化固体电解质界面(SEI),从而有效调节锂的沉积行为并延长锂金属负极的稳定性。因此,MXene@CF骨架在1 mA cm下循环200次后仍保持98.5%的高库仑效率(CE)。基于MXene@CF的对称电池可以运行超过1000小时而无剧烈电压波动,并展现出卓越的深度充放电能力。MXene@CF-Li|LiFePO全电池表现出出色的长期循环稳定性(300次循环后容量保持率为95%)。我们的研究表明,MXene可以有效调节锂的沉积行为,这可能为无枝晶锂负极提供一种可行的解决方案。