Yannello Vincent J, Lu Erdong, Fredrickson Daniel C
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Inorg Chem. 2020 Sep 8;59(17):12304-12313. doi: 10.1021/acs.inorgchem.0c01393. Epub 2020 Aug 7.
Magnetic ordering in inorganic materials is generally considered to be a mechanism for structures to stabilize open shells of electrons. The intermetallic phase MnHg represents a remarkable exception: its crystal structure is in accordance with the 18- bonding scheme and non-spin-polarized density functional theory (DFT) calculations show a corresponding pseudogap near its Fermi energy. Nevertheless, it exhibits strong antiferromagnetic ordering virtually all the way up to its decomposition temperature. In this Article, we examine how these two features of MnHg coexist through the development of a DFT implementation of the reversed approximation Molecular Orbital (raMO) analysis. In the non-spin-polarized electronic structure, the DFT-raMO approach confirms that MnHg adheres to the 18- rule: its chains of Mn atoms are linked through isolobal triple bonds, with three electron pairs being shared at each Mn-Mn contact in one σ-type and two π-type functions. Because each Mn atom has 6 isolobal Mn-Mn bonds, it achieves a filled 18-electron count at the compound's electron concentration of 18 - 6 = 12 electrons/Mn. A pseudogap thus occurs at the Fermi energy. Upon the introduction of antiferromagnetic order, the original pseudogap widens and deepens, suggesting enhancement of a stabilizing effect already present in the nonmagnetic state. A raMO analysis reveals that antiferromagnetism enlarges the gap by allowing diradical character to enter into the Mn-Mn isolobal π bonds, reminiscent of the dissociation of a classic covalent bond. Antiferromagnetism is accompanied by residual bonding in the π system, making MnHg a vivid realization of the concept of covalent magnetism.
无机材料中的磁有序通常被认为是结构稳定开放电子壳层的一种机制。金属间化合物相MnHg是一个显著的例外:其晶体结构符合18电子成键模式,非自旋极化密度泛函理论(DFT)计算表明在其费米能附近存在相应的赝能隙。然而,它几乎在直至其分解温度的整个范围内都表现出强反铁磁有序。在本文中,我们通过开发一种用于反向近似分子轨道(raMO)分析的DFT实现方法,研究了MnHg的这两个特征是如何共存的。在非自旋极化电子结构中,DFT-raMO方法证实MnHg遵循18电子规则:其锰原子链通过等瓣三键相连,在每个Mn-Mn接触处有三对电子以一个σ型和两个π型函数共享。由于每个锰原子有6个等瓣Mn-Mn键,在化合物的电子浓度为18 - 6 = 12个电子/Mn时,它实现了18电子的满壳层。因此在费米能处出现一个赝能隙。引入反铁磁序后,原来的赝能隙变宽且加深,这表明非磁态中已经存在的稳定效应得到了增强。raMO分析表明,反铁磁性通过使双自由基特征进入Mn-Mn等瓣π键而扩大了能隙,这让人联想到经典共价键的解离。反铁磁性伴随着π体系中的残余键合,使得MnHg生动地实现了共价磁性的概念。