Cheng Che-Hsuan, Cordovilla Leon Darwin, Li Zidong, Litvak Emmett, Deotare Parag B
ACS Nano. 2020 Aug 25;14(8):10462-10470. doi: 10.1021/acsnano.0c04367. Epub 2020 Aug 10.
We investigate the energy transport in an organic-inorganic hybrid platform formed between semiconductors that support stable room-temperature excitons. We find that following photoexcitation, fast-moving hot hybrid charge-transfer excitons (HCTEs) are formed in about 36 ps scattering with optical phonons at the interface between j-aggregates of organic dye and inorganic monolayer MoS. Once the energy falls below the optical phonon energy, the excess kinetic energy is relaxed slowly acoustic phonon scattering, resulting in energy transport that is dominated by fast-moving hot HCTEs that transition into cold HCTEs in about 110 ps. We model the exciton-phonon interactions using Fröhlich and deformation potential theory and attribute the prolonged transport of hot HCTEs to phonon bottleneck. We find that the measured diffusivity of HCTEs in both hot and cold regions of transport was higher than the diffusivity of MoS exciton and verify these results by conducting the experiments with different excitation energies. This work not only provides significant insight into the initial energy transport of HCTEs at organic-inorganic hybrid interfaces but also contributes to the formulation of a complete physical picture of the energy dynamics in hybrid materials, which are poised to advance applications in energy conversion and optoelectronic devices.
我们研究了在支持稳定室温激子的半导体之间形成的有机-无机混合平台中的能量传输。我们发现,光激发后,快速移动的热混合电荷转移激子(HCTEs)在约36皮秒内形成,在有机染料的j聚集体与无机单层MoS的界面处与光学声子发生散射。一旦能量降至光学声子能量以下,多余的动能通过声学声子散射缓慢弛豫,导致能量传输由快速移动的热HCTEs主导,这些热HCTEs在约110皮秒内转变为冷HCTEs。我们使用弗罗利希和形变势理论对激子-声子相互作用进行建模,并将热HCTEs的长时间传输归因于声子瓶颈。我们发现,在传输的热区和冷区中测量的HCTEs扩散率高于MoS激子的扩散率,并通过不同激发能量的实验验证了这些结果。这项工作不仅为有机-无机混合界面处HCTEs的初始能量传输提供了重要见解,也有助于形成混合材料中能量动力学的完整物理图像,有望推动能量转换和光电器件的应用。