Pedroso-Santana Seidy, Lamazares Arcia Emilio, Fleitas-Salazar Noralvis, Gancino Guevara Marlon, Mansilla Rodrigo, Gómez-Gaete Carolina, Altamirano Claudia, Fernandez Katherina, Ruiz Alvaro, Toledo Alonso Jorge R
Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile.
Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile; Centro de Biotecnología y Biomedicina SpA, Granada 168, Vilumanque, Concepción, Chile.
Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111260. doi: 10.1016/j.msec.2020.111260. Epub 2020 Jul 6.
Polymeric nanoparticulate systems allow the encapsulation of bio-active substances, giving them protection against external agents and increasing the drug's bioavailability. The use of biocompatible and biodegradable polymers usually guarantees the harmless character of the formulation, and a controlled drug release is also assured. A relatively easy procedure to obtain polymeric formulations of bioactive agents is ionotropic gelation, which allows the synthesis of chitosan (CS) - sodium tri-polyphosphate nanoparticles (NPs) loading encapsulated proteins. In this work, Bovine serum albumin (BSA) model protein and a recombinant porcine alpha interferon variant were used to obtain nanoparticulate formulations. The internalization of the encapsulated material by cells was studied using a BSA-fluorescein system; the fluorescent conjugate was observable inside the cells after 20 h of incubation. The therapeutic CS-alpha interferon formulation showed a maximum of protein released in vitro at around 90 h. This system was found to be safe in a cytotoxicity assay, while biological activity experiments in vitro showed antiviral protection of cells in the presence of encapsulated porcine alpha interferon. In vivo experiments in pigs revealed a significant and sustained antiviral response through overexpression of the antiviral markers OAS2 and PKR. This proves the preservation of porcine alpha interferon biological activity, and also that a lasting response was obtained. This procedure is an effective and safe method to formulate drugs in nanoparticulate systems, representing a significant contribution to the search for more effective drug delivery strategies.
聚合物纳米颗粒系统能够包裹生物活性物质,保护它们免受外界因素影响,并提高药物的生物利用度。使用生物相容性和可生物降解的聚合物通常能确保制剂的无害性,同时也能保证药物的控释。一种相对简单的制备生物活性剂聚合物制剂的方法是离子凝胶法,该方法可用于合成负载有包封蛋白的壳聚糖(CS)-三聚磷酸钠纳米颗粒(NPs)。在这项研究中,使用牛血清白蛋白(BSA)模型蛋白和重组猪α干扰素变体来制备纳米颗粒制剂。利用BSA-荧光素系统研究了细胞对包封物质的摄取情况;孵育20小时后,在细胞内可观察到荧光共轭物。治疗性CS-α干扰素制剂在体外约90小时时蛋白质释放量达到最大值。在细胞毒性试验中发现该系统是安全的,而体外生物活性实验表明,在存在包封的猪α干扰素的情况下,细胞具有抗病毒保护作用。在猪身上进行的体内实验显示,通过抗病毒标志物OAS2和PKR的过表达,产生了显著且持续的抗病毒反应。这证明了猪α干扰素生物活性得以保留,并且获得了持久的反应。该方法是在纳米颗粒系统中制备药物的一种有效且安全的方法,为寻找更有效的药物递送策略做出了重要贡献。