Ferraris S, Yamaguchi S, Barbani N, Cristallini C, Gautier di Confiengo G, Barberi J, Cazzola M, Miola M, Vernè E, Spriano S
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Chubu University, 1200 Matsumoto cho -, Kasugai, Japan.
Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111238. doi: 10.1016/j.msec.2020.111238. Epub 2020 Jun 25.
Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
生物活性材料在植入过程中以及与生理流体和组织长期接触时应保持其性能。在本研究中,对五种不同的生物活性材料(一种生物活性玻璃和四种不同化学处理的生物活性钛表面)进行了研究,并比较了表面生物活性层 - 基底界面的机械稳定性、它们的长期生物活性、成熟的羟基磷灰石类型以及羟基磷灰石 - 表面生物活性层界面的稳定性。使用了大量物理和化学分析方法(如拉曼光谱、宏观和微观划痕试验、在模拟体液(SBF)中浸泡、配备能量色散光谱的场发射扫描电子显微镜(SEM - EDS)、zeta电位测量以及带有化学成像的傅里叶变换红外光谱(FTIR))。划痕测量证明了金属表面在表面生物活性层 - 基底界面的机械稳定性方面存在差异。所有表面,尽管生物活性动力学不同,但在SBF中浸泡28天后均被具有B型取代的类骨碳酸羟基磷灰石覆盖。然而,所有材料的磷灰石层稳定性并不相同:在pH约为4(接近炎症状态)时,生物活性较快的表面以更明显的方式发生溶解,同时表面生物活性层会脱落。本文提出了一种表征方案,以预测植入物 - 骨界面的稳定性。