Suppr超能文献

微生物协同相互作用增强了共培养驱动微生物燃料电池中的发电。

Microbial synergistic interactions enhanced power generation in co-culture driven microbial fuel cell.

机构信息

Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada; Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advancement Research Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia.

Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia.

出版信息

Sci Total Environ. 2020 Oct 10;738:140138. doi: 10.1016/j.scitotenv.2020.140138. Epub 2020 Jun 12.

Abstract

An understanding of the inter-species relationships, especially their metabolic network in a mixed-culture system, is crucial to design an effective inoculum for enhancing the power generation of wastewater fed microbial fuel cell (MFC). In the present study, the influence of microbial mutualistic interactions on the power generation of palm oil mill effluent fed MFCs has been widely investigated by designing several co-culture and mixed culture inoculums. Among the different inoculum compositions, the highest power density of 14.8 W/m was achieved by Pseudomonas aeruginosa and Klebsiella variicola co-culture inoculum due to their synergistic relationships which were inter-linked via fermentation-based metabolites. Besides, the interaction of K. variicola and Bacillus cereus positively influenced the power generation resulting in a maximum power density of 11.8 W/m whereas the antagonistic relationship between B. cereus and P. aeruginosa resulted in a lower power generation of 1.9 W/m. The microbial mutualistic interactions were investigated with polarization, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), as well as by using metabolite and biofilm analysis. It was observed that the synergism between bacteria enhanced power generation through the production of higher electron shuttling mediators and efficient biofilm formation as evidenced by polarization, CV and EIS analysis. In contrast, the antagonistic relationship resulted in production of cell inhibiting metabolites leading to the formation of ineffective biofilm. These findings demonstrate that the synergistic interaction between or within microorganisms is emergent in designing co-culture or mixed-culture inoculum for achieving maximum power generation in MFCs.

摘要

了解种间关系,特别是混合培养系统中的代谢网络,对于设计有效的接种物以增强废水微生物燃料电池 (MFC) 的发电能力至关重要。在本研究中,通过设计几种共培养和混合培养接种物,广泛研究了微生物共生相互作用对棕榈油厂废水进料 MFC 发电的影响。在不同的接种物组成中,由于发酵基代谢物的相互关联,铜绿假单胞菌和产酸克雷伯氏菌共培养接种物实现了最高的功率密度 14.8 W/m,因为它们具有协同关系。此外,产酸克雷伯氏菌和蜡样芽孢杆菌之间的相互作用对发电有积极影响,导致最大功率密度为 11.8 W/m,而蜡样芽孢杆菌和铜绿假单胞菌之间的拮抗关系导致发电较低,为 1.9 W/m。通过极化、循环伏安法 (CV)、电化学阻抗谱 (EIS) 以及代谢物和生物膜分析研究了微生物共生相互作用。观察到细菌之间的协同作用通过产生更高的电子穿梭介体和有效的生物膜形成来增强发电,这一点可以通过极化、CV 和 EIS 分析得到证明。相比之下,拮抗关系导致产生抑制细胞的代谢物,导致形成无效的生物膜。这些发现表明,在设计共培养或混合培养接种物以实现 MFC 中的最大发电功率时,微生物之间或内部的协同相互作用是涌现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验