Saraiva Joao Pedro, Worrich Anja, Karakoç Canan, Kallies Rene, Chatzinotas Antonis, Centler Florian, Nunes da Rocha Ulisses
Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
Microorganisms. 2021 Apr 14;9(4):840. doi: 10.3390/microorganisms9040840.
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions' role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species' contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
由于微生物群落的复杂性以及处理大数据所需的计算能力,挖掘种间相互作用仍然是一项挑战。我们的荟萃分析表明,仅靠遗传潜力并不能解决所有与微生物相互作用挖掘相关的问题。然而,它可以作为推断协同种间相互作用以及将搜索空间(即物种数量和代谢反应)限制在可管理规模的起点。缩小的搜索空间减少了验证推断的假定相互作用所需的额外实验数量。作为验证实验,我们研究多组学和先进的成像技术如何能进一步增进我们对物种相互作用在生态系统过程中作用的理解。最后,我们分析了当前从遗传潜力推断微生物相互作用方法的优缺点,并基于以下几点提出了一个新的理论框架:(i)群落关键成员的基因组信息;(ii)与特定假设或研究问题相关的生态系统过程信息;(iii)识别假定物种对感兴趣的生态系统过程贡献的能力;以及(iv)通过整合其他数据源对假定微生物相互作用进行验证。