Suppr超能文献

高盐螺旋藻残渣诱导生物炭固定水溶液中的 Hg(II):双重模式等温线的吸附和转化机制。

Immobilization of Hg(II) on high-salinity Spirulina residue-induced biochar from aqueous solutions: Sorption and transformation mechanisms by the dual-mode isotherms.

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.

出版信息

Environ Pollut. 2020 Oct;265(Pt B):115087. doi: 10.1016/j.envpol.2020.115087. Epub 2020 Jun 23.

Abstract

Removal of Hg(II) by biochar (BC) is a promising remediation technology. The high-salinity Spirulina residue (HSR) is a hazardous waste generated during extracting the pigment phycocyanin under high salinity conditions. Although HSR-derived BC (HSRBC) exhibited the excellent sorption capacity of Hg(II), the involved mechanisms have been rarely studied. In this study, we investigated the specific properties and Hg(II) sorption mechanisms of HSRBCs. Chloride and calcium minerals were formed in HSRBCs. Increments in carbonization temperature (from 350 to 700 °C) or time (from 90 to 540 min) led to the enhancement of aromaticity, porosity, and positive charge, but cracked oxygen-containing groups and C-N bonds. Further increase in carbonization temperature or time decreased the sorption of Hg(II). At environmentally relevant concentration of Hg(II) (2-4 mg/L), the sorption capacity (6.1-12.7 mg/g) obtained in HSRBC350 was comparable to activated carbon. Based on dual-mode isotherm, surface sorption accounted for 75-88% uptake, while precipitation accounted for 12-25% uptake. In addition, the C-O, CO, and CC groups were responsible for the monodentate/bidentate complexation and reduction, while Cl triggered HgCl precipitation. Overall, this study provided a new insight in creating an excellent Hg(II) sorbent from hazardous waste, and revealed the sorption mechanisms for Hg(II) uptake.

摘要

生物炭(BC)去除 Hg(II) 是一种很有前景的修复技术。高盐螺旋藻残渣(HSR)是在高盐条件下提取藻蓝蛋白时产生的危险废物。尽管 HSR 衍生的生物炭(HSRBC)表现出对 Hg(II) 的优异吸附能力,但涉及的机制却很少被研究。在本研究中,我们研究了 HSRBC 的特性和 Hg(II)吸附机制。在 HSRBC 中形成了氯化物和钙矿物质。碳化温度(从 350 到 700°C)或时间(从 90 到 540 分钟)的增加导致芳香度、孔隙率和正电荷的增加,但同时也破坏了含氧基团和 C-N 键。碳化温度或时间的进一步增加会降低 Hg(II)的吸附。在环境相关浓度的 Hg(II)(2-4mg/L)下,HSRBC350 获得的吸附容量(6.1-12.7mg/g)可与活性炭相媲美。基于双模式等温线,表面吸附占 75-88%的吸附量,而沉淀占 12-25%的吸附量。此外,C-O、CO 和 CC 基团负责单齿/双齿络合和还原,而 Cl 则引发 HgCl 沉淀。总的来说,本研究为利用危险废物创造优异的 Hg(II)吸附剂提供了新的见解,并揭示了 Hg(II)吸收的吸附机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验