Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (AUMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
Department of Medical Informatics, Erasmus University, 3000 CA Rotterdam, The Netherlands.
Int J Mol Sci. 2020 Aug 12;21(16):5784. doi: 10.3390/ijms21165784.
Fabry Disease (FD) is a rare, X-linked, lysosomal storage disease that mainly causes renal, cardiac and cerebral complications. Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A is available, but approximately 50% of male patients with classical FD develop inhibiting anti-drug antibodies (iADAs) that lead to reduced biochemical responses and an accelerated loss of renal function. Once immunization has occurred, iADAs tend to persist and tolerization is hard to achieve. Here we developed a pre-treatment prediction model for iADA development in FD using existing data from 120 classical male FD patients from three European centers, treated with ERT. We found that nonsense and frameshift mutations in the α-galactosidase A gene ( = 0.05), higher plasma lysoGb3 at baseline ( < 0.001) and agalsidase beta as first treatment ( = 0.006) were significantly associated with iADA development. Prediction performance of a Random Forest model, using multiple variables (AUC-ROC: 0.77) was compared to a logistic regression (LR) model using the three significantly associated variables (AUC-ROC: 0.77). The LR model can be used to determine iADA risk in individual FD patients prior to treatment initiation. This helps to determine in which patients adjusted treatment and/or immunomodulatory regimes may be considered to minimize iADA development risk.
法布雷病(FD)是一种罕见的 X 连锁溶酶体贮积病,主要导致肾脏、心脏和大脑并发症。可采用重组α-半乳糖苷酶 A 的酶替代疗法(ERT)进行治疗,但约 50%的经典 FD 男性患者会产生抑制性抗药物抗体(iADA),导致生化反应降低和肾功能加速丧失。一旦发生免疫,iADA 往往会持续存在,难以耐受。在这里,我们使用来自三个欧洲中心的 120 名经典男性 FD 患者的现有数据,开发了一种用于 FD 中 iADA 发展的预处理预测模型,这些患者接受了 ERT 治疗。我们发现,α-半乳糖苷酶 A 基因中的无义突变和移码突变(=0.05)、基线时更高的血浆溶酶体 Gb3(<0.001)和首选用药 agalsidase beta(=0.006)与 iADA 的发展显著相关。使用多个变量的随机森林模型(AUC-ROC:0.77)的预测性能与使用三个显著相关变量的逻辑回归(LR)模型(AUC-ROC:0.77)进行了比较。LR 模型可用于在开始治疗前确定个体 FD 患者的 iADA 风险。这有助于确定在哪些患者中可能需要考虑调整治疗和/或免疫调节方案,以最小化 iADA 发展的风险。