Erazo Eider A, Sánchez-Godoy H E, Gualdrón-Reyes Andrés F, Masi Sofia, Mora-Seró Iván
Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain.
Departamento de Química, Universidad de los Andes, Bogotá D.C. 111711, Colombia.
Nanomaterials (Basel). 2020 Aug 12;10(8):1586. doi: 10.3390/nano10081586.
α-CsPbI quantum dots (QDs) show outstanding photoelectrical properties that had been harnessed in the fabrication of perovskite QDs solar cells. Nevertheless, the stabilization of the CsPbI perovskite cubic phase remains a challenge due to its own thermodynamic and the presence of surface defects. Herein, we report the optimization of the CsPbI QDs solar cells, by monitoring the structure, the morphology and the optoelectronic properties after a precise treatment, consisting of the conventional solvent washing with a time limited ultraviolet (UV) exposure combination, during the layer-by-layer deposition. The UV treatment compensates the defects coming from the essential but deleterious washing treatment. The material is stable for 200 h and the PCE improved by the 25% compared with that of the device without UV treatment. The photo-enhanced ion mobility mechanism is discussed as the main process for the CsPbI QDs and solar cell stability.
α-铯铅碘量子点(QDs)展现出卓越的光电性能,已被应用于钙钛矿量子点太阳能电池的制造中。然而,由于CsPbI钙钛矿立方相自身的热力学性质以及表面缺陷的存在,其稳定性仍然是一个挑战。在此,我们报告了CsPbI量子点太阳能电池的优化情况,通过在逐层沉积过程中,采用常规溶剂洗涤与限时紫外线(UV)曝光相结合的精确处理后,监测其结构、形貌和光电性能。紫外线处理补偿了来自必要但有害的洗涤处理产生的缺陷。该材料在200小时内保持稳定,与未经紫外线处理的器件相比,光电转换效率(PCE)提高了25%。光增强离子迁移机制被讨论为CsPbI量子点和太阳能电池稳定性的主要过程。