Suppr超能文献

孤独症的表型和全基因组关联研究聚类分析。

Clustering by phenotype and genome-wide association study in autism.

机构信息

Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.

Graduate School of Medicine, Tohoku University, Sendai, Japan.

出版信息

Transl Psychiatry. 2020 Aug 17;10(1):290. doi: 10.1038/s41398-020-00951-x.

Abstract

Autism spectrum disorder (ASD) has phenotypically and genetically heterogeneous characteristics. A simulation study demonstrated that attempts to categorize patients with a complex disease into more homogeneous subgroups could have more power to elucidate hidden heritability. We conducted cluster analyses using the k-means algorithm with a cluster number of 15 based on phenotypic variables from the Simons Simplex Collection (SSC). As a preliminary study, we conducted a conventional genome-wide association study (GWAS) with a data set of 597 ASD cases and 370 controls. In the second step, we divided cases based on the clustering results and conducted GWAS in each of the subgroups vs controls (cluster-based GWAS). We also conducted cluster-based GWAS on another SSC data set of 712 probands and 354 controls in the replication stage. In the preliminary study, which was conducted in conventional GWAS design, we observed no significant associations. In the second step of cluster-based GWASs, we identified 65 chromosomal loci, which included 30 intragenic loci located in 21 genes and 35 intergenic loci that satisfied the threshold of P < 5.0 × 10. Some of these loci were located within or near previously reported candidate genes for ASD: CDH5, CNTN5, CNTNAP5, DNAH17, DPP10, DSCAM, FOXK1, GABBR2, GRIN2A5, ITPR1, NTM, SDK1, SNCA, and SRRM4. Of these 65 significant chromosomal loci, rs11064685 located within the SRRM4 gene had a significantly different distribution in the cases vs controls in the replication cohort. These findings suggest that clustering may successfully identify subgroups with relatively homogeneous disease etiologies. Further cluster validation and replication studies are warranted in larger cohorts.

摘要

自闭症谱系障碍 (ASD) 在表型和遗传上具有异质性特征。一项模拟研究表明,尝试将复杂疾病的患者分为更同质的亚组,可能更有能力阐明隐藏的遗传性。我们使用基于表型变量的 k-均值算法 (k-means algorithm) 进行聚类分析,聚类数为 15,数据来自西蒙斯单倍型 (Simons Simplex) 集合 (SSC)。作为初步研究,我们使用包含 597 例 ASD 病例和 370 例对照的数据集进行了常规全基因组关联研究 (GWAS)。在第二步中,我们根据聚类结果将病例分组,并在每个亚组与对照组 (基于聚类的 GWAS) 中进行 GWAS。我们还在复制阶段对另一个来自 SSC 的 712 例先证者和 354 例对照的数据集进行了基于聚类的 GWAS。在常规 GWAS 设计的初步研究中,我们没有观察到显著的相关性。在基于聚类的 GWAS 的第二步中,我们确定了 65 个染色体位置,其中包括 30 个位于 21 个基因内的基因内位置和 35 个满足 P<5.0×10 阈值的基因间位置。这些位置中的一些位于先前报道的 ASD 候选基因内或附近:CDH5、CNTN5、CNTNAP5、DNAH17、DPP10、DSCAM、FOXK1、GABBR2、GRIN2A5、ITPR1、NTM、SDK1、SNCA 和 SRRM4。在这 65 个显著的染色体位置中,位于 SRRM4 基因内的 rs11064685 在复制队列的病例与对照组中分布有显著差异。这些发现表明聚类可以成功识别具有相对同质疾病病因的亚组。在更大的队列中,需要进一步验证和复制聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d186/7431539/e6444619a707/41398_2020_951_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验