College of Earth & Environmental Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Punjab, 54590, Pakistan.
Development Working Plan Circle, Punjab Forest Department, 108 Ravi Road, Lahore, Punjab, Pakistan.
Environ Monit Assess. 2020 Aug 17;192(9):584. doi: 10.1007/s10661-020-08546-1.
In this study, we investigate stand-alone and combined Pleiades high-resolution passive optical and ALOS PALSAR active Synthetic Aperture Radar (SAR) satellite imagery for aboveground biomass (AGB) estimation in subtropical mountainous Chir Pine (Pinus roxburghii) forest in Murree Forest Division, Punjab, Pakistan. Spectral vegetation indices (NDVI, SAVI, etc.) and sigma nought HV-polarization backscatter dB values are derived from processing optical and SAR datasets, respectively, and modeled against field-measured AGB values through various regression models (linear, nonlinear, multi-linear). For combination of multiple spectral indices, NDVI, TNDVI, and MSAVI2 performed the best with model R/RMSE values of 0.86/47.3 tons/ha. AGB modeling with SAR sigma nought dB values gives low model R value of 0.39. The multi-linear combination of SAR sigma nought dB values with spectral indices exhibits more variability as compared with the combined spectral indices model. The Leave-One-Out-Cross-Validation (LOOCV) results follow closely the behavior of the model statistics. SAR data reaches AGB saturation at around 120-140 tons/ha, with the region of high sensitivity around 50-130 tons/ha; the SAR-derived AGB results show clear underestimation at higher AGB values. The models involving only spectral indices underestimate AGB at low values (< 60 tons/ha). This study presents biomass estimation maps of the Chir Pine forest in the study area and also the suitability of optical and SAR satellite imagery for estimating various biomass ranges. The results of this work can be utilized towards environmental monitoring and policy-level applications, including forest ecosystem management, environmental impact assessment, and performance-based REDD+ payment distribution.
在这项研究中,我们调查了 Pleiades 高分辨率无源光学和 ALOS PALSAR 主动合成孔径雷达 (SAR) 卫星图像,用于估计巴基斯坦旁遮普省穆雷森林分区亚热带山区喜马拉雅冷杉 (Pinus roxburghii) 林地上的生物量 (AGB)。从处理光学和 SAR 数据集分别得出光谱植被指数 (NDVI、SAVI 等) 和 sigma nought HV 极化后向散射 dB 值,并通过各种回归模型 (线性、非线性、多线性) 将其与实地测量的 AGB 值进行建模。对于多个光谱指数的组合,NDVI、TNDVI 和 MSAVI2 的表现最佳,模型 R/RMSE 值为 0.86/47.3 吨/公顷。利用 SAR sigma nought dB 值进行 AGB 建模得到的模型 R 值较低,为 0.39。与组合光谱指数模型相比,SAR sigma nought dB 值与光谱指数的多线性组合表现出更大的可变性。留一法交叉验证 (LOOCV) 结果紧密遵循模型统计数据的行为。SAR 数据在约 120-140 吨/公顷时达到 AGB 饱和,高灵敏度区域在 50-130 吨/公顷左右; SAR 衍生的 AGB 结果在较高 AGB 值时显示明显低估。仅涉及光谱指数的模型在低值 (<60 吨/公顷) 下低估了 AGB。本研究提供了研究区域内喜马拉雅冷杉林的生物量估计图,以及光学和 SAR 卫星图像在估计各种生物量范围方面的适用性。这项工作的结果可用于环境监测和政策层面的应用,包括森林生态系统管理、环境影响评估和基于绩效的 REDD+ 支付分配。