Kano Shinya, Mekaru Harutaka
Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
Nanotechnology. 2020 Nov 6;31(45):455701. doi: 10.1088/1361-6528/aba7e0. Epub 2020 Aug 18.
We study capillary-condensed water in nonporous nanoparticle films and evaluate its effect on impedance analysis for practical nanoparticle devices. Nanoparticle-based electronic/optoelectronic devices have been intensively studied for applications in ambient air. Non-sintered nanoparticle films have porous structures and a vapor phase of water molecules condenses in nanopores between nanoparticles at a lower vapor pressure. This condensed water hinders intrinsic electrical properties of nanoparticle films. To clarify the effects of capillary-condensed water between nanoparticles on impedance, we electrically investigate 50 nm and 10 nm nonporous silica nanoparticle films. In a 50 nm nanoparticle film, an impedance hysteresis is observed at higher than 80% of relative humidity (RH). On the contrary, a larger impedance hysteresis appears in a 10 nm nanoparticle film at higher than 50% RH. We evaluate critical pore sizes in 50 nm and 10 nm nanoparticle films as 5-10 and 1.6 nm, respectively. These values correspond to the critical size of nanopores where adjacent menisci between nanoparticles coincide as following the Kelvin equation. This condensation of gas/vapor molecules will be an important issue for developments of practical devices using nanoparticle films.
我们研究了无孔纳米颗粒薄膜中的毛细管凝聚水,并评估了其对实际纳米颗粒器件阻抗分析的影响。基于纳米颗粒的电子/光电器件在环境空气中的应用已得到深入研究。未烧结的纳米颗粒薄膜具有多孔结构,在较低的蒸气压下,水分子的气相会在纳米颗粒之间的纳米孔中凝聚。这种凝聚水会阻碍纳米颗粒薄膜的固有电学性质。为了阐明纳米颗粒之间的毛细管凝聚水对阻抗的影响,我们对50纳米和10纳米的无孔二氧化硅纳米颗粒薄膜进行了电学研究。在50纳米的纳米颗粒薄膜中,在相对湿度(RH)高于80%时观察到阻抗滞后现象。相反,在10纳米的纳米颗粒薄膜中,在RH高于50%时出现更大的阻抗滞后现象。我们将50纳米和10纳米纳米颗粒薄膜中的临界孔径分别评估为5 - 10纳米和1.6纳米。这些值对应于纳米颗粒之间相邻弯月面重合时的纳米孔临界尺寸,这遵循开尔文方程。气体/蒸气分子的这种凝聚对于使用纳米颗粒薄膜的实际器件的开发将是一个重要问题。