Zhao Lianming, Liu Haijun, Liu Yonghui, Han Xiaonan, Xu Jing, Xing Wei, Guo Wenyue
School of Materials Science and Engineering, Institute of Advanced Materials, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40248-40260. doi: 10.1021/acsami.0c09005. Epub 2020 Aug 29.
The promising alkaline anion exchange membrane fuel cell suffers from sluggish kinetics of the hydrogen oxidation reaction (HOR). However, the puzzling HOR mechanism hinders the further development of highly active catalysts in alkaline media. In this work, we conducted detailed first-principles calculations to acquire a deep understanding of the alkaline HOR mechanism on PtNi bulk alloys [PtNi(111), PtNi(111), and PtNi(111)] and its surface alloy [PtNi(111)]. The full free energy profiles suggest that the HOR on PtNi alloys proceeds the Tafel-Volmer mechanism, that is, the direct decomposition of H into two adsorbed H, followed by its reaction with OH in the electrolyte, as the rate-determining step, to form HO. Therefore, the HOR activity of PtNi alloys is solely impacted by the adsorption of hydrogen, rather than hydroxyl species, though the oxophilicity is also enhanced by alloying Pt with Ni. Thermodynamically, a moderate H adsorption free energy, Δ ≈ 0.414 eV, is calculated to be an optimal candidate for the HOR at pH = 13. Alloying Pt with Ni can elevate the d-band center (ε), push the value of Δ closer to 0.414 eV, and thus lower the free energy barrier () of the rate-determining Volmer reaction, leading to the highest HOR activity of PtNi(111) among all considered PtNi alloys. This situation is further confirmed by both the microkinetic model and the Tafel plot, where PtNi(111) exhibits the highest reaction rate ( = 9.42 × 10 s site) and the largest exchange current density ( = 1.42 mA cm) for HOR in alkaline media. This work provides a fundamental understanding of the HOR mechanism and theoretical guidance for rational design of electrocatalysts for HOR in alkaline media.
前景广阔的碱性阴离子交换膜燃料电池存在氢氧化反应(HOR)动力学迟缓的问题。然而,令人困惑的氢氧化反应机理阻碍了碱性介质中高活性催化剂的进一步发展。在这项工作中,我们进行了详细的第一性原理计算,以深入了解碱性氢氧化反应在PtNi体相合金[PtNi(111)、PtNi(111)和PtNi(111)]及其表面合金[PtNi(111)]上的反应机理。完整的自由能剖面图表明,PtNi合金上的氢氧化反应遵循Tafel-Volmer机理,即H直接分解为两个吸附的H,随后其与电解质中的OH反应,作为速率决定步骤,形成HO。因此,PtNi合金的氢氧化反应活性仅受氢吸附的影响,而不是羟基物种,尽管通过将Pt与Ni合金化也增强了氧亲合性。从热力学角度计算,适度的H吸附自由能Δ≈0.414 eV被认为是pH = 13时氢氧化反应的最佳候选值。将Pt与Ni合金化可以提高d带中心(ε),使Δ值更接近0.414 eV,从而降低速率决定步骤Volmer反应的自由能垒(),导致在所有考虑的PtNi合金中PtNi(111)具有最高的氢氧化反应活性。微观动力学模型和塔菲尔曲线都进一步证实了这种情况,其中PtNi(111)在碱性介质中氢氧化反应表现出最高的反应速率( = 9.42×10 s位点)和最大的交换电流密度( = 1.42 mA cm)。这项工作为氢氧化反应机理提供了基本认识,并为碱性介质中氢氧化反应电催化剂的合理设计提供了理论指导。