Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States.
Chemistry Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.
J Chem Theory Comput. 2020 Oct 13;16(10):6418-6427. doi: 10.1021/acs.jctc.0c00295. Epub 2020 Sep 1.
Computational simulation of nonadiabatic molecular dynamics is an indispensable tool for understanding complex photoinduced processes such as internal conversion, energy transfer, charge separation, and spatial localization of excitons, to name a few. We report an implementation of the fewest-switches surface-hopping algorithm in the NWChem computational chemistry program. The surface-hopping method is combined with linear-response time-dependent density functional theory calculations of adiabatic excited-state potential energy surfaces. To treat quantum transitions between arbitrary electronic Born-Oppenheimer states, we have implemented both numerical and analytical differentiation schemes for derivative nonadiabatic couplings. A numerical approach for the time-derivative nonadiabatic couplings together with an analytical method for calculating nonadiabatic coupling vectors is an efficient combination for surface-hopping approaches. Additionally, electronic decoherence schemes and a state reassigned unavoided crossings algorithm are implemented to improve the accuracy of the simulated dynamics and to handle trivial unavoided crossings. We apply our code to study the ultrafast decay of photoexcited benzene, including a detailed analysis of the potential energy surface, population decay timescales, and vibrational coordinates coupled to the excitation dynamics. We also study the photoinduced dynamics in trans-distyrylbenzene. This study provides a baseline for future implementations of higher-level frameworks for simulating nonadiabatic molecular dynamics in NWChem.
非绝热分子动力学的计算模拟是理解复杂光诱导过程(如内转换、能量转移、电荷分离和激子的空间局域化等)的不可或缺的工具。我们报告了在 NWChem 计算化学程序中实现最少跃迁表面跳跃算法。表面跳跃法与绝热激发态势能表面的线性响应含时密度泛函理论计算相结合。为了处理任意电子 Born-Oppenheimer 态之间的量子跃迁,我们已经实现了用于导数非绝热耦合的数值和解析微分方案。用于时间导数非绝热耦合的数值方法和用于计算非绝热耦合向量的解析方法是表面跳跃方法的有效组合。此外,还实现了电子退相干方案和状态重新分配不可避免交叉算法,以提高模拟动力学的准确性并处理平凡不可避免交叉。我们将我们的代码应用于研究光激发苯的超快衰变,包括对势能表面、种群衰减时间尺度和与激发动力学耦合的振动坐标的详细分析。我们还研究了反式二苯乙烯的光诱导动力学。这项研究为未来在 NWChem 中模拟非绝热分子动力学的更高层次框架的实现提供了基准。