IEEE Trans Cybern. 2022 May;52(5):3408-3421. doi: 10.1109/TCYB.2020.3012607. Epub 2022 May 19.
This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
本文针对一类具有非严格反馈形式和预定跟踪精度的不确定随机非线性系统,解决了自适应神经跟踪控制问题。采用径向基函数神经网络(RBF NN)在线逼近未知连续函数,并通过自适应动态面控制(DSC)方法和增益抑制不等式技术设计期望控制器。与不确定随机系统的已有研究不同,通过将一些非负切换函数与动态面方法和非线性滤波器相结合,克服了设计难度,并利用随机 Barbalat 引理分析了控制性能。在所构造的控制器下,跟踪误差以概率收敛于预先定义的精度。仿真结果验证了所提出的控制方案的有效性。