IEEE Trans Neural Netw Learn Syst. 2015 Sep;26(9):1842-54. doi: 10.1109/TNNLS.2014.2357451. Epub 2014 Sep 25.
This paper addresses the problem of globally stable direct adaptive backstepping neural network (NN) tracking control design for a class of uncertain strict-feedback systems under the assumption that the accuracy of the ultimate tracking error is given a priori. In contrast to the classical adaptive backstepping NN control schemes, this paper analyzes the convergence of the tracking error using Barbalat's Lemma via some nonnegative functions rather than the positive-definite Lyapunov functions. Thus, the accuracy of the ultimate tracking error can be determined and adjusted accurately a priori, and the closed-loop system is guaranteed to be globally uniformly ultimately bounded. The main technical novelty is to construct three new n th-order continuously differentiable functions, which are used to design the control law, the virtual control variables, and the adaptive laws. Finally, two simulation examples are given to illustrate the effectiveness and advantages of the proposed control method.
本文针对一类不确定严格反馈系统,提出了一种基于直接自适应反步神经网络(NN)跟踪控制设计的全局稳定问题,假设预先给定了最终跟踪误差的精度。与传统的自适应反步 NN 控制方案不同,本文通过一些非负函数而不是正定 Lyapunov 函数来分析跟踪误差的收敛性。因此,可以准确地预先确定和调整最终跟踪误差的精度,并保证闭环系统全局一致有界。主要的技术创新是构建了三个新的 n 阶连续可微函数,用于设计控制律、虚拟控制变量和自适应律。最后,通过两个仿真示例说明了所提出的控制方法的有效性和优势。