Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
Chemphyschem. 2020 Oct 16;21(20):2263-2271. doi: 10.1002/cphc.202000652. Epub 2020 Sep 21.
Isoprene is the most abundant volatile organic compound in the atmosphere after methane. While gas-phase processes have been widely studied, the chemistry of isoprene in aqueous environments is less well known. Nevertheless, some experiments have reported unexpected reactivity at the air-water interface. In this work, we have carried out combined quantum-classical molecular dynamics simulations of isoprene at the air-water interface, as well as ab initio and density functional theory calculations on isoprene-water complexes. We report the first calculation of the thermodynamics of adsorption of isoprene at the water surface, examine how hydration influences its electronic properties and reactivity indices, and estimate the OH-initiated oxidation rate. Our study indicates that isoprene interacts with the water surface mainly through H-π bonding. This primary interaction mode produces strong fluctuations of the π and π bond stabilities, and therefore of isoprene's chemical potential, nucleophilicity and ionization potential, anticipating significant dynamical effects on its reactivity at the air-water interface. Using data from the literature and free energies reported in our work, we have estimated the rate of the OH-initiated oxidation process at the air-water interface (5.0×10 molecule cm s ) to be about 7 orders of magnitude larger than the corresponding rate in the gas phase (8.2×10 molecule cm s ). Atmospheric implications of this result are discussed.
异戊二烯是大气中除甲烷外最丰富的挥发性有机化合物。虽然气相过程已得到广泛研究,但异戊二烯在水相环境中的化学性质知之甚少。然而,一些实验已经报道了在气-液界面处的意外反应性。在这项工作中,我们对气-液界面处的异戊二烯进行了量子经典分子动力学模拟,并对异戊二烯-水复合物进行了从头算和密度泛函理论计算。我们报告了异戊二烯在水表面吸附热力学的首次计算,研究了水合作用如何影响其电子性质和反应性指数,并估计了 OH 引发的氧化速率。我们的研究表明,异戊二烯主要通过 H-π 键合与水表面相互作用。这种主要的相互作用模式会产生 π 和 π 键稳定性的强烈波动,从而影响异戊二烯的化学势、亲核性和电离势,预计会对其在气-液界面处的反应性产生显著的动力学影响。我们利用文献中的数据和我们工作中报告的自由能,估计了气-液界面上 OH 引发的氧化过程的速率(5.0×10 molecule cm s )大约是气相中相应速率(8.2×10 molecule cm s )的 7 个数量级。讨论了这一结果对大气的影响。