Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
Curr Top Med Chem. 2020;20(23):2106-2117. doi: 10.2174/1568026620666200819155503.
Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias' treatment.
Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors.
Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman's method. We calculated also physicochemical and structural parameters for CNS delivery.
The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes.
Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.
酰腙类化合物具有多种生物活性,包括乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BuChE)抑制作用。胆碱酯酶抑制剂是治疗痴呆症的主要药物。
设计了 25 种碘化酰腙及其类似物作为潜在的中枢 AChE 和 BuChE 抑制剂。
酰腙类化合物由 4-取代苯甲酰肼和 2-/4-羟基-3,5-二碘苯甲醛合成。采用 Ellman 法测定化合物对电鳗 AChE 和马血清 BuChE 的抑制活性。我们还计算了用于中枢神经系统传递的物理化学和结构参数。
衍生物表现出中等的双重抑制作用,AChE 和 BuChE 的 IC50 值范围分别为 15.1-140.5 和 35.5-170.5 μmol·L-1。一般来说,这些化合物对 AChE 的抑制作用更平衡或更有效。N'-[(E)-(4-羟基-3,5-二碘苯基)亚甲基]-4-硝基苯甲酰肼 2k 和 4-氟-N'-(2-羟基-3,5-二碘苄基)苯甲酰肼 3a 分别是 AChE 和 BuChE 的最强抑制剂。建立了构效关系,并通过分子对接研究证实了与酶的相互作用。
许多新型酰腙类化合物对 AChE 的抑制作用比rivastigmine 的 IC50 值低,其中一些对 BuChE 的抑制作用与用于治疗痴呆症的 rivastigmine 相当。它们通过非共价键结合到酶的活性部位与胆碱酯酶相互作用。根据 BOILEDEgg 方法,大多数衍生物符合血脑屏障通透性的标准。