Suppr超能文献

基于中国多中心研究的 4 个长链非编码 RNA 标志物预测非小细胞肺癌患者预后的分析。

Identification of a 4-lncRNA signature predicting prognosis of patients with non-small cell lung cancer: a multicenter study in China.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.

Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China.

出版信息

J Transl Med. 2020 Aug 20;18(1):320. doi: 10.1186/s12967-020-02485-8.

Abstract

BACKGROUND

Previous findings have indicated that the tumor, nodes, and metastases (TNM) staging system is not sufficient to accurately predict survival outcomes in patients with non-small lung carcinoma (NSCLC). Thus, this study aims to identify a long non-coding RNA (lncRNA) signature for predicting survival in patients with NSCLC and to provide additional prognostic information to TNM staging system.

METHODS

Patients with NSCLC were recruited from a hospital and divided into a discovery cohort (n = 194) and validation cohort (n = 172), and detected using a custom lncRNA microarray. Another 73 NSCLC cases obtained from a different hospital (an independent validation cohort) were examined with qRT-PCR. Differentially expressed lncRNAs were determined with the Significance Analysis of Microarrays program, from which lncRNAs associated with survival were identified using Cox regression in the discovery cohort. These prognostic lncRNAs were employed to construct a prognostic signature with a risk-score method. Then, the utility of the prognostic signature was confirmed using the validation cohort and the independent cohort.

RESULTS

In the discovery cohort, we identified 305 lncRNAs that were differentially expressed between the NSCLC tissues and matched, adjacent normal lung tissues, of which 15 are associated with survival; a 4-lncRNA prognostic signature was identified from the 15 survival lncRNAs, which was significantly correlated with survivals of NSCLC patients. This signature was further validated in the validation cohort and independent validation cohort. Moreover, multivariate Cox analysis demonstrates that the 4-lncRNA signature is an independent survival predictor. Then we established a new risk-score model by combining 4-lncRNA signature and TNM staging stage. The receiver operating characteristics (ROC) curve indicates that the prognostic value of the combined model is significantly higher than that of the TNM stage alone, in all the cohorts.

CONCLUSIONS

In this study, we identified a 4-lncRNA signature that may be a powerful prognosis biomarker and can provide additional survival information to the TNM staging system.

摘要

背景

先前的研究结果表明,肿瘤、淋巴结和转移(TNM)分期系统不足以准确预测非小细胞肺癌(NSCLC)患者的生存结局。因此,本研究旨在确定 NSCLC 患者生存预测的长链非编码 RNA(lncRNA)特征,并为 TNM 分期系统提供额外的预后信息。

方法

从一家医院招募 NSCLC 患者,并将其分为发现队列(n=194)和验证队列(n=172),使用定制的 lncRNA 微阵列进行检测。来自另一所医院的 73 例 NSCLC 病例(独立验证队列)通过 qRT-PCR 进行检查。差异表达的 lncRNAs 通过 Significance Analysis of Microarrays 程序确定,从发现队列中使用 Cox 回归确定与生存相关的 lncRNAs。使用风险评分方法构建预后 lncRNA 特征。然后使用验证队列和独立队列验证该预后特征的效用。

结果

在发现队列中,我们在 NSCLC 组织和匹配的相邻正常肺组织之间鉴定出 305 个差异表达的 lncRNAs,其中 15 个与生存相关;从这 15 个生存 lncRNAs 中鉴定出一个 4-lncRNA 预后特征,与 NSCLC 患者的生存显著相关。该特征在验证队列和独立验证队列中得到进一步验证。此外,多变量 Cox 分析表明,4-lncRNA 特征是独立的生存预测因子。然后,我们通过结合 4-lncRNA 特征和 TNM 分期建立了一个新的风险评分模型。受试者工作特征(ROC)曲线表明,在所有队列中,组合模型的预后价值明显高于 TNM 分期单独。

结论

在这项研究中,我们确定了一个 4-lncRNA 特征,它可能是一种强大的预后生物标志物,可以为 TNM 分期系统提供额外的生存信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/366d/7441565/c5027818dd20/12967_2020_2485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验