Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan.
Department of Information Management, Chang Gung University, Taoyuan City, Taiwan.
JAMA Netw Open. 2020 Aug 3;3(8):e2011768. doi: 10.1001/jamanetworkopen.2020.11768.
A tool for precisely stratifying postoperative patients with advanced oral cancer is crucial for the treatment plan, such as intensifying or deintensifying the regimen to improve their quality of life and prognosis.
To develop and validate a machine learning-based algorithm that can provide survival risk stratification for patients with advanced oral cancer who have comprehensive clinicopathologic and genetic data.
DESIGN, SETTING, AND PARTICIPANTS: In this prognostic cohort study, the elastic net penalized Cox proportional hazards regression-based risk stratification model was developed and validated using single-center data collected between January 1, 1996, and December 31, 2011. In total, comprehensive clinicopathologic and genetic data (including clinical, pathologic, and 44 cancer-related gene variant profiles) of 334 patients with stage III or IV oral squamous cell carcinoma were used to develop and validate the algorithm in this 15-year cohort study. Data analysis was conducted between February 1, 2018, and May 6, 2020.
The main outcomes were cancer-specific survival, distant metastasis-free survival, and locoregional recurrence-free survival. Model performance was compared in terms of the Akaike information criterion and the Harrell concordance index (C index).
Complete data were available for 334 patients (315 men; median age at onset, 48 years [interquartile range, 42-56 years]). The predictive models using comprehensive clinicopathologic and genetic data outperformed those using clinicopathologic data alone. In the groups of postoperative patients receiving adjuvant concurrent chemoradiotherapy, the models demonstrated higher classification performance than those using clinicopathologic data alone in cancer-specific survival (mean [SD] C index, 0.689 [0.050] vs 0.673 [0.051]; P = .02) and locoregional recurrence-free survival (mean [SD] C index, 0.693 [0.039] vs 0.678 [0.035]; P = .004). The classification performance in distant metastasis-free survival was not different (mean [SD] C index, 0.702 [0.056] vs 0.688 [0.048]; P = .09).
A risk stratification model using comprehensive clinicopathologic and genetic data accurately differentiated the high-risk group from the low-risk group in cancer-specific survival and locoregional recurrence-free survival for postoperative patients with advanced oral cancer. This algorithm could be used through an online calculator to provide additional personalized information for postoperative management of patients with advanced oral squamous cell carcinoma.
对于治疗计划,如强化或减弱方案,为患有晚期口腔癌的术后患者提供精确的分层至关重要,以提高他们的生活质量和预后。
开发和验证一种基于机器学习的算法,该算法可以为具有全面临床病理和遗传数据的晚期口腔癌患者提供生存风险分层。
设计、地点和参与者:在这项预后队列研究中,基于弹性网惩罚 Cox 比例风险回归的风险分层模型在 1996 年 1 月 1 日至 2011 年 12 月 31 日期间收集的单中心数据的基础上进行了开发和验证。共有 334 名 III 期或 IV 期口腔鳞状细胞癌患者的综合临床病理和遗传数据(包括临床、病理和 44 个癌症相关基因变异谱)用于该 15 年队列研究中的算法开发和验证。数据分析于 2018 年 2 月 1 日至 2020 年 5 月 6 日进行。
主要结果是癌症特异性生存、远处转移无复发生存和局部区域无复发生存。通过赤池信息量准则和哈雷尔一致性指数(C 指数)比较模型性能。
334 名患者(315 名男性;发病中位年龄,48 岁[四分位距,42-56 岁])的完整数据可用。使用综合临床病理和遗传数据的预测模型优于仅使用临床病理数据的模型。在接受术后辅助同步放化疗的患者组中,模型在癌症特异性生存方面表现出比仅使用临床病理数据更高的分类性能(平均[SD]C 指数,0.689[0.050]比 0.673[0.051];P=0.02)和局部区域无复发生存(平均[SD]C 指数,0.693[0.039]比 0.678[0.035];P=0.004)。远处转移无复发生存的分类性能无差异(平均[SD]C 指数,0.702[0.056]比 0.688[0.048];P=0.09)。
使用综合临床病理和遗传数据的风险分层模型准确地区分了晚期口腔癌术后患者癌症特异性生存和局部区域无复发生存的高危组和低危组。该算法可通过在线计算器使用,为晚期口腔鳞状细胞癌患者的术后管理提供额外的个性化信息。