Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
JAMA Surg. 2021 Feb 1;156(2):e205601. doi: 10.1001/jamasurg.2020.5601. Epub 2021 Feb 10.
Recommendations for adjuvant therapy after surgical resection of lung adenocarcinoma (LUAD) are based solely on TNM classification but are agnostic to genomic and high-risk clinicopathologic factors. Creation of a prediction model that integrates tumor genomic and clinicopathologic factors may better identify patients at risk for recurrence.
To identify tumor genomic factors independently associated with recurrence, even in the presence of aggressive, high-risk clinicopathologic variables, in patients with completely resected stages I to III LUAD, and to develop a computational machine-learning prediction model (PRecur) to determine whether the integration of genomic and clinicopathologic features could better predict risk of recurrence, compared with the TNM system.
DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study included 426 patients treated from January 1, 2008, to December 31, 2017, at a single large cancer center and selected in consecutive samples. Eligibility criteria included complete surgical resection of stages I to III LUAD, broad-panel next-generation sequencing data with matched clinicopathologic data, and no neoadjuvant therapy. External validation of the PRecur prediction model was performed using The Cancer Genome Atlas (TCGA). Data were analyzed from 2014 to 2018.
The study end point consisted of relapse-free survival (RFS), estimated using the Kaplan-Meier approach. Associations among clinicopathologic factors, genomic alterations, and RFS were established using Cox proportional hazards regression. The PRecur prediction model integrated genomic and clinicopathologic factors using gradient-boosting survival regression for risk group generation and prediction of RFS. A concordance probability estimate (CPE) was used to assess the predictive ability of the PRecur model.
Of the 426 patients included in the analysis (286 women [67%]; median age at surgery, 69 [interquartile range, 62-75] years), 318 (75%) had stage I cancer. Association analysis showed that alterations in SMARCA4 (clinicopathologic-adjusted hazard ratio [HR], 2.44; 95% CI, 1.03-5.77; P = .042) and TP53 (clinicopathologic-adjusted HR, 1.73; 95% CI, 1.09-2.73; P = .02) and the fraction of genome altered (clinicopathologic-adjusted HR, 1.03; 95% CI, 1.10-1.04; P = .005) were independently associated with RFS. The PRecur prediction model outperformed the TNM-based model (CPE, 0.73 vs 0.61; difference, 0.12 [95% CI, 0.05-0.19]; P < .001) for prediction of RFS. To validate the prediction model, PRecur was applied to the TCGA LUAD data set (n = 360), and a clear separation of risk groups was noted (log-rank statistic, 7.5; P = .02), confirming external validation.
The findings suggest that integration of tumor genomics and clinicopathologic features improves risk stratification and prediction of recurrence after surgical resection of early-stage LUAD. Improved identification of patients at risk for recurrence could enrich and enhance accrual to adjuvant therapy clinical trials.
肺腺癌(LUAD)手术后辅助治疗的建议仅基于 TNM 分类,但对基因组和高风险临床病理因素则一无所知。创建一个整合肿瘤基因组和临床病理因素的预测模型,可能会更好地识别出有复发风险的患者。
即使在存在侵袭性、高风险临床病理变量的情况下,也要确定完全切除的 I 期至 III 期 LUAD 患者中与复发独立相关的肿瘤基因组因素,并开发一种计算机器学习预测模型(PRecur),以确定与 TNM 系统相比,整合基因组和临床病理特征是否能更好地预测复发风险。
设计、设置和参与者:这项前瞻性队列研究纳入了 2008 年 1 月 1 日至 2017 年 12 月 31 日在一家大型癌症中心连续样本中接受治疗的 426 例患者。入选标准包括 I 期至 III 期 LUAD 的完全手术切除、具有匹配临床病理数据的广泛面板下一代测序数据以及无新辅助治疗。使用癌症基因组图谱(TCGA)对 PRecur 预测模型进行外部验证。数据分析于 2014 年至 2018 年进行。
本研究的终点为无复发生存率(RFS),采用 Kaplan-Meier 法估计。使用 Cox 比例风险回归分析建立临床病理因素、基因组改变与 RFS 之间的关联。PRecur 预测模型通过梯度提升生存回归来整合基因组和临床病理因素,以生成风险组和预测 RFS。一致性概率估计(CPE)用于评估 PRecur 模型的预测能力。
在分析中纳入的 426 例患者(286 例女性[67%];手术时的中位年龄为 69[四分位间距,62-75]岁)中,318 例(75%)为 I 期癌症。关联分析显示,SMARCA4 改变(临床病理调整后的危险比[HR],2.44;95%CI,1.03-5.77;P=0.042)和 TP53 改变(临床病理调整后的 HR,1.73;95%CI,1.09-2.73;P=0.02)以及基因组改变分数(临床病理调整后的 HR,1.03;95%CI,1.10-1.04;P=0.005)与 RFS 独立相关。PRecur 预测模型优于基于 TNM 的模型(CPE,0.73 比 0.61;差异,0.12[95%CI,0.05-0.19];P<0.001),可更好地预测 RFS。为了验证预测模型,将 PRecur 应用于 TCGA LUAD 数据集(n=360),并注意到风险组的明显分离(对数秩检验,7.5;P=0.02),证实了外部验证。
研究结果表明,肿瘤基因组学和临床病理特征的整合可改善早期 LUAD 手术后的风险分层和复发预测。更好地识别有复发风险的患者可以丰富和加强辅助治疗临床试验的入组。