Suppr超能文献

采用多模态延迟 PSO 算法对自治混合微电网进行多目标优化设计:以渔村为例。

Multiobjective Sizing of an Autonomous Hybrid Microgrid Using a Multimodal Delayed PSO Algorithm: A Case Study of a Fishing Village.

机构信息

Laboratory of Intelligent Energy Management and Information Systems, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco.

I2SP Team, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco.

出版信息

Comput Intell Neurosci. 2020 Aug 7;2020:8894094. doi: 10.1155/2020/8894094. eCollection 2020.

Abstract

Renewable energy (RE) systems play a key role in producing electricity worldwide. The integration of RE systems is carried out in a distributed aspect via an autonomous hybrid microgrid (A-HMG) system. The A-HMG concept provides a series of technological solutions that must be managed optimally. As a solution, this paper focuses on the application of a recent nature-inspired metaheuristic optimization algorithm named a multimodal delayed particle swarm optimization (MDPSO). The proposed algorithm is applied to an A-HMG to find the minimum levelized cost of energy (LCOE), the lowest loss of power supply probability (LPSP), and the maximum renewable factor (REF). Firstly, a smart energy management scheme (SEMS) is proposed to coordinate the power flow among the various system components that formed the A-HMG. Then, the MDPSO is integrated with the SEMS to perform the optimal sizing for the A-HMG of a fishing village that is located in the coastal city of Essaouira, Morocco. The proposed A-HMG comprises photovoltaic panels (PV), wind turbines (WTs), battery storage systems, and diesel generators (DGs). The results of the optimization in this location show that A-HMG system can be applied for this location with a high renewable factor that is equal to 90%. Moreover, the solution is very promising in terms of the LCOE and the LPSP indexes that are equal to 0.17$/kWh and 0.12%, respectively. Therefore, using renewable energy can be considered as a good alternative to enhance energy access in remote areas as the fishing village in the city of Essaouira, Morocco. Furthermore, a sensitivity analysis is applied to highlight the impact of varying each energy source in terms of the LCOE index.

摘要

可再生能源(RE)系统在全球发电中起着关键作用。通过自治混合微电网(A-HMG)系统以分布式方式集成可再生能源系统。A-HMG 概念提供了一系列必须优化管理的技术解决方案。作为解决方案,本文重点介绍了一种名为多模态延迟粒子群优化(MDPSO)的最新受自然启发的元启发式优化算法的应用。该算法应用于 A-HMG 以找到最低的能源平准化成本(LCOE)、最低的供电概率损失(LPSP)和最高的可再生因子(REF)。首先,提出了一种智能能源管理方案(SEMS),以协调形成 A-HMG 的各个系统组件之间的功率流。然后,将 MDPSO 与 SEMS 集成,以对位于摩洛哥沿海城市埃萨乌伊拉的渔村的 A-HMG 进行最佳尺寸设计。所提出的 A-HMG 包括光伏(PV)面板、风力涡轮机(WT)、电池储能系统和柴油发电机(DG)。在该地点进行的优化结果表明,A-HMG 系统可以应用于该地点,可再生因子高达 90%。此外,在 LCOE 和 LPSP 指标方面,该解决方案非常有前途,分别等于 0.17$/kWh 和 0.12%。因此,在摩洛哥埃萨乌伊拉市的渔村等偏远地区,使用可再生能源可以被视为增强能源获取的一种很好的替代方案。此外,还进行了敏感性分析,以突出每种能源在 LCOE 指数方面的变化对其的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ef/7429020/474f97da47dd/CIN2020-8894094.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验