Suppr超能文献

迈向公平的人工智能干预药物使用者:需要伦理投资的关键领域。

Towards Equitable AI Interventions for People Who Use Drugs: Key Areas That Require Ethical Investment.

机构信息

British Columbia Centre on Substance Use, 400-1045 Howe Street, Vancouver, BC V6Z 2A9, Canada (LT, RK); Department of Medicine, University of British Columbia, 10 Floor, Vancouver, BC V5Z 1M9, Canada (LT, RK); School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada (AH).

出版信息

J Addict Med. 2021 Apr 1;15(2):96-98. doi: 10.1097/ADM.0000000000000722.

Abstract

There has been growing investment in artificial intelligence (AI) interventions to combat the opioid-driven overdose epidemic plaguing North America. Although the evidence for the use of technology and AI in medicine is mounting, there are a number of ethical, social, and political implications that need to be considered when designing AI interventions. In this commentary, we describe 2 key areas that will require ethical deliberation in order to ensure that AI is being applied ethically with socially vulnerable populations such as people who use drugs: (1) perpetuation of biases in data and (2) consent. We offer ways forward to guide and provide opportunities for interventionists to develop substance use-related AI technologies that account for the inherent biases embedded within conventional data systems. This includes a discussion of how other data generation techniques (eg, qualitative and community-based approaches) can be integrated within AI intervention development efforts to mitigate the limitations of relying on electronic health record data. Finally, we emphasize the need to involve people who use drugs as stakeholders in all phases of AI intervention development.

摘要

人们越来越多地投资人工智能 (AI) 干预措施,以应对困扰北美的阿片类药物驱动的过量流行。尽管越来越多的证据表明技术和人工智能在医学中的应用,但在设计 AI 干预措施时,需要考虑到一些伦理、社会和政治方面的影响。在这篇评论中,我们描述了 2 个关键领域,这些领域需要进行伦理审议,以确保 AI 在针对社会弱势群体(如吸毒者)时得到合乎道德的应用:(1)数据中的偏见延续;(2)同意。我们提供了一些前进的方法,为干预者提供指导,并为他们开发与药物使用相关的人工智能技术提供机会,这些技术考虑了传统数据系统中固有的偏见。这包括讨论如何在人工智能干预开发工作中整合其他数据生成技术(例如定性和基于社区的方法),以减轻依赖电子健康记录数据的局限性。最后,我们强调需要让吸毒者作为利益相关者参与 AI 干预开发的所有阶段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验