Sánchez-Murillo Ricardo, Esquivel-Hernández Germain, Birkel Christian, Ortega Lucia, Sánchez-Guerrero Michael, Rojas-Jiménez Luis Daniel, Vargas-Víquez José, Castro-Chacón Laura
Stable Isotopes Research Group and Water Resources Management Laboratory, School of Chemistry, Universidad Nacional, Heredia, Costa Rica.
Department of Geography and Water and Global Change Observatory, University of Costa Rica, San José, Costa Rica.
Isotopes Environ Health Stud. 2020 Oct-Dec;56(5-6):606-623. doi: 10.1080/10256016.2020.1809390. Epub 2020 Aug 24.
Water use by anthropogenic activities in the face of climate change invokes a better understanding of headwater sources and lowland urban water allocations. Here, we constrained a Bayesian mixing model with stable isotope data (2018-2019) in rainfall ( = 704), spring water ( = 96), and surface water ( = 94) with seasonal isotope sampling (wet and dry seasons) of an urban aqueduct ( = 215) in the Central Valley of Costa Rica. Low O rainfall compositions corresponded to the western boundary of the study area, whereas high values were reported to the northeastern limit, reflecting the influence of moisture transport from the Caribbean domain coupled with strong orographic effects over the Pacific slope. The latter is well-depicted in the relative rainfall contributions (west versus east) in two headwater systems: (a) spring (68.7 ± 3.4 %, west domain) and (b) stream (55.8 ± 3.9 %, east domain). The aqueduct exhibited a spatial predominance of spring water and surface water during a normal wet season (78.7 %), whereas deep groundwater and spring water were fundamental sources for the aqueduct in the dry season (69.4 %). Our tracer-based methodology can help improve aqueduct management practices in changing climate, including optimal water allocation and reduced evaporative losses in the dry season.
面对气候变化,人为活动的用水情况需要我们更好地了解源头水源和低地城市的水资源分配。在此,我们利用哥斯达黎加中央山谷一条城市输水管道(n = 215)在2018 - 2019年期间的降雨(n = 704)、泉水(n = 96)和地表水(n = 94)的稳定同位素数据,并结合季节性同位素采样(湿季和干季),对贝叶斯混合模型进行了约束。低δ¹⁸O降雨组成对应于研究区域的西部边界,而高值则出现在东北边界,这反映了来自加勒比地区的水汽输送的影响以及太平洋斜坡上强烈的地形效应。后者在两个源头水系的相对降雨贡献(西部与东部)中得到了很好的体现:(a)泉水(68.7 ± 3.4%,西部区域)和(b)溪流(55.8 ± 3.9%,东部区域)。在正常湿季,输水管道的水源在空间上以泉水和地表水为主(78.7%),而在干季,深层地下水和泉水是输水管道的主要水源(69.4%)。我们基于示踪剂的方法有助于在气候变化情况下改进输水管道的管理实践,包括优化水资源分配和减少干季的蒸发损失。