Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain.
Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain.
Chemosphere. 2021 Jan;263:127942. doi: 10.1016/j.chemosphere.2020.127942. Epub 2020 Aug 9.
Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae. In this study, one thermal and two enzymatic pretreatments (carbohydrases and proteases) were employed to enhance Chlorella vulgaris biomass solubilization prior to AF. Pretreated and non-pretreated microalgae were assessed in continuous stirred tank reactors (CSTRs) for SCFAs production. Aiming to understand microorganisms' roles in AF depending on the employed substrate, not only bioconversion yields into SCFAs were evaluated but microbial communities were thoroughly characterized. Proteins were responsible for the inherent limitation of raw biomass conversion into SCFAs. Indeed, the proteolytic pretreatment resulted in the highest bioconversion (33.4% SCFAs-COD/CODin), displaying a 4-fold enhancement compared with raw biomass. Population dynamics revealed a microbial biodiversity loss along the AF regardless of the applied pretreatment, evidencing that the imposed operational conditions specialized the microbial community. In fact, a reduced abundance in Euryarchaeota phylum explained the low methanogenic activity, implying SCFAs accumulation. The bacterial community developed in the reactors fed with pretreated microalgae exhibited high acidogenic activities, being dominated by Firmicutes and Bacteroidetes. Firmicutes was by far the dominant phylum when using protease (65% relative abundance) while Bacteroidetes was prevailing in the reactor fed with carbohydrase-pretreated microalgae biomass (40% relative abundance). This fact indicated that the applied pretreatment and macromolecule solubilization have a strong effect on microbial distribution and therefore in SCFAs bioconversion yields.
短链脂肪酸 (SCFAs) 被认为是所谓的羧酸盐平台中生物产物的构建块。这些化合物可以通过有机底物(如微藻)的厌氧发酵 (AF) 可持续生产。然而,由于一些微藻坚硬的细胞壁,SCFAs 的生物转化效率受到阻碍。在这项研究中,采用了一种热预处理和两种酶预处理(碳水化合物酶和蛋白酶)来提高微藻生物质在 AF 之前的溶解能力。在连续搅拌罐反应器 (CSTR) 中评估了预处理和未预处理的微藻用于 SCFAs 生产。为了了解根据所使用的底物微生物在 AF 中的作用,不仅评估了生物转化为 SCFAs 的产率,还对微生物群落进行了全面的特征描述。蛋白质是导致原始生物质固有转化率低的原因。事实上,蛋白酶预处理导致最高的生物转化(33.4% SCFAs-COD/CODin),与原始生物质相比提高了 4 倍。种群动态表明,无论应用何种预处理,AF 过程中的微生物多样性都会丧失,这表明所施加的操作条件使微生物群落专业化。事实上,古菌门丰度的减少解释了低产甲烷活性,意味着 SCFAs 的积累。在反应器中,使用预处理的微藻作为进料时,细菌群落表现出很高的产酸活性,主要由厚壁菌门和拟杆菌门组成。在使用蛋白酶时,厚壁菌门迄今为止是最主要的门(相对丰度为 65%),而当使用碳水化合物酶预处理微藻生物质时,拟杆菌门占主导地位(相对丰度为 40%)。这一事实表明,所应用的预处理和大分子溶解对微生物分布以及 SCFAs 的生物转化产率有很强的影响。