Suppr超能文献

视网膜母细胞瘤中的染色质调控因子:生物学作用和治疗应用。

Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

出版信息

J Cell Physiol. 2021 Apr;236(4):2318-2332. doi: 10.1002/jcp.30022. Epub 2020 Aug 25.

Abstract

Retinoblastoma (RB) is a pediatric ocular tumor mostly occurring due to the biallelic loss of RB1 gene in the developing retina. Early studies of genomic aberrations in RB have provided a valuable insight into how RB can progress following the tumor-initiating RB1 mutations and have established a notion that inactivation of RB1 gene is critical to initiate RB but this causative genetic lesion alone is not sufficient for malignant progression. With the advent of high-throughput sequencing technologies, we now have access to the comprehensive genomic and epigenetic landscape of RB and have come to appreciate that RB tumorigenesis requires both genetic and epigenetic alterations that might be directly or indirectly driven by RB1 loss. This integrative perspective on RB tumorigenesis has inspired research efforts to better understand the types and functions of epigenetic mechanisms contributing to RB development, leading to the identification of multiple epigenetic regulators misregulated in RB in recent years. A complete understanding of the intricate network of genetic and epigenetic factors in modulation of gene expression during RB tumorigenesis remains a major challenge but would be crucial to translate these findings into therapeutic interventions. In this review, we will provide an overview of chromatin regulators identified to be misregulated in human RB among the numerous epigenetic factors implicated in RB development. For a subset of these chromatin regulators, recent findings on their functions in RB development and potential therapeutic applications are discussed.

摘要

视网膜母细胞瘤(RB)是一种小儿眼部肿瘤,主要由于发育中的视网膜中 RB1 基因的双等位基因缺失而发生。早期对 RB 中基因组异常的研究为了解 RB1 突变后肿瘤如何进展提供了宝贵的见解,并确立了 RB1 基因失活对于启动 RB 至关重要的概念,但这种致病变异本身对于恶性进展还不够。随着高通量测序技术的出现,我们现在可以获得 RB 的全面基因组和表观遗传景观,并开始认识到 RB 肿瘤发生需要遗传和表观遗传改变,这些改变可能直接或间接地由 RB1 缺失驱动。这种对 RB 肿瘤发生的综合观点激发了研究工作,以更好地理解导致 RB 发展的表观遗传机制的类型和功能,近年来已确定了多个在 RB 中失调的表观遗传调节剂。全面了解在 RB 肿瘤发生过程中调节基因表达的遗传和表观遗传因素的复杂网络仍然是一个主要挑战,但将这些发现转化为治疗干预措施至关重要。在这篇综述中,我们将概述在人类 RB 中已确定为失调的染色质调节剂,其中涉及许多与 RB 发展相关的表观遗传因素。对于这些染色质调节剂中的一部分,我们将讨论它们在 RB 发育中的功能及其潜在的治疗应用的最新发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff1/7891620/00bb59c2a937/JCP-236-2318-g001.jpg

相似文献

1
Chromatin regulators in retinoblastoma: Biological roles and therapeutic applications.
J Cell Physiol. 2021 Apr;236(4):2318-2332. doi: 10.1002/jcp.30022. Epub 2020 Aug 25.
3
Etiology including epigenetic defects of retinoblastoma.
Asia Pac J Ophthalmol (Phila). 2024 May-Jun;13(3):100072. doi: 10.1016/j.apjo.2024.100072. Epub 2024 May 22.
6
Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma.
Lab Invest. 2015 Nov;95(11):1278-90. doi: 10.1038/labinvest.2015.104. Epub 2015 Aug 17.
7
Epigenetic regulation of human retinoblastoma.
Tumour Biol. 2016 Nov;37(11):14427-14441. doi: 10.1007/s13277-016-5308-3. Epub 2016 Sep 17.
9
Pan-cancer molecular analysis of the RB tumor suppressor pathway.
Commun Biol. 2020 Apr 2;3(1):158. doi: 10.1038/s42003-020-0873-9.

引用本文的文献

1
The Role of Chronic Inflammation in Pediatric Cancer.
Cancers (Basel). 2025 Jan 6;17(1):154. doi: 10.3390/cancers17010154.
3
Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy.
Cancers (Basel). 2024 Apr 19;16(8):1558. doi: 10.3390/cancers16081558.
4
BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade.
Mol Cancer Ther. 2023 Jun 1;22(6):751-764. doi: 10.1158/1535-7163.MCT-22-0369.
5
Development and validation of a chromatin regulator prognostic signature in colon adenocarcinoma.
Front Genet. 2022 Nov 23;13:986325. doi: 10.3389/fgene.2022.986325. eCollection 2022.
6
Retinoblastoma: Review and new insights.
Front Oncol. 2022 Nov 2;12:963780. doi: 10.3389/fonc.2022.963780. eCollection 2022.
8
Advances in the research of plant-derived natural products against retinoblastoma.
Int J Ophthalmol. 2022 Aug 18;15(8):1391-1400. doi: 10.18240/ijo.2022.08.24. eCollection 2022.
9
Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities.
Oncol Lett. 2022 Jun;23(6):192. doi: 10.3892/ol.2022.13312. Epub 2022 Apr 29.
10
Applications of Non-Coding RNAs in Patients With Retinoblastoma.
Front Genet. 2022 Mar 31;13:842509. doi: 10.3389/fgene.2022.842509. eCollection 2022.

本文引用的文献

2
3
The timeline of epigenetic drug discovery: from reality to dreams.
Clin Epigenetics. 2019 Dec 2;11(1):174. doi: 10.1186/s13148-019-0776-0.
5
Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy.
Trends Cancer. 2019 May;5(5):308-324. doi: 10.1016/j.trecan.2019.03.005. Epub 2019 Apr 30.
6
Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors.
Front Oncol. 2019 Apr 16;9:221. doi: 10.3389/fonc.2019.00221. eCollection 2019.
7
Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway.
Pathol Oncol Res. 2020 Apr;26(2):1079-1088. doi: 10.1007/s12253-019-00656-7. Epub 2019 May 2.
9
BET and EZH2 Inhibitors: Novel Approaches for Targeting Cancer.
Curr Oncol Rep. 2019 Feb 4;21(2):13. doi: 10.1007/s11912-019-0762-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验