Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-69120 Heidelberg, Germany
Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-69120 Heidelberg, Germany.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22890-22899. doi: 10.1073/pnas.2004655117. Epub 2020 Aug 25.
CRISPR-Cas genome engineering has revolutionized biomedical research by enabling targeted genome modification with unprecedented ease. In the popular model organism , gene editing has so far relied exclusively on the prototypical CRISPR nuclease Cas9. Additional CRISPR systems could expand the genomic target space, offer additional modes of regulation, and enable the independent manipulation of genes in different cells of the same animal. Here we describe a platform for efficient Cas12a gene editing in We show that Cas12a from , but not spec., can mediate robust gene editing in vivo. In combination with most CRISPR RNAs (crRNAs), LbCas12a activity is high at 29 °C, but low at 18 °C, enabling modulation of gene editing by temperature. LbCas12a can directly utilize compact crRNA arrays that are substantially easier to construct than Cas9 single-guide RNA arrays, facilitating multiplex genome engineering. Furthermore, we show that conditional expression of LbCas12a is sufficient to mediate tightly controlled gene editing in a variety of tissues, allowing detailed analysis of gene function in a multicellular organism. We also test a variant of LbCas12a with a D156R point mutation and show that it has substantially higher activity and outperforms a state-of-the-art Cas9 system in identifying essential genes. Cas12a gene editing expands the genome-engineering toolbox in and will be a powerful method for the functional annotation of the genome. This work also presents a fully genetically encoded Cas12a system in an animal, laying out principles for the development of similar systems in other genetically tractable organisms for multiplexed conditional genome engineering.
CRISPR-Cas 基因组工程通过前所未有的简便性实现了靶向基因组修饰,从而彻底改变了生物医学研究。在流行的模式生物中,基因编辑迄今为止完全依赖于典型的 CRISPR 核酸酶 Cas9。额外的 CRISPR 系统可以扩展基因组靶标空间,提供额外的调控模式,并能够独立操纵同一动物不同细胞中的基因。在这里,我们描述了一种在 中有效进行 Cas12a 基因编辑的平台。我们表明, 来源的 Cas12a,但不是 来源的 Cas12a,可以在体内介导强大的基因编辑。与大多数 CRISPR RNA(crRNA)结合,LbCas12a 在 29°C 时活性很高,但在 18°C 时活性很低,从而可以通过温度来调节基因编辑。LbCas12a 可以直接利用比 Cas9 单指导 RNA 阵列更易于构建的紧凑 crRNA 阵列,从而促进基因组的多重工程。此外,我们表明 LbCas12a 的条件表达足以在多种组织中介导严格控制的基因编辑,从而可以在多细胞生物中对基因功能进行详细分析。我们还测试了具有 D156R 点突变的 LbCas12a 变体,结果表明它具有更高的活性,并且在鉴定必需基因方面优于最先进的 Cas9 系统。Cas12a 基因编辑扩展了 的基因组工程工具包,并将成为对基因组进行功能注释的强大方法。这项工作还在动物中展示了一种完全遗传编码的 Cas12a 系统,为在其他遗传上可操作的生物中开发类似的多重条件基因组工程系统奠定了原则。