Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, Agronomia, CEP. 91.501-970 Porto Alegre, RS, Brazil.
Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, Agronomia, CEP. 91.501-970 Porto Alegre, RS, Brazil.
Food Res Int. 2020 Oct;136:109609. doi: 10.1016/j.foodres.2020.109609. Epub 2020 Jul 29.
In this study mathematical models to predict Salmonella enterica growth in sushi at different temperatures were developed considering data obtained in 26 restaurants in Southern Brazil. The sushi type chosen to develop the models was the one that presented the highest total aerobic mesophilic counts among sushis collected in the establishments. Salmonella was inoculated (2-3 log UFC/g) in this sushi type prepared in the laboratory (pH 4.8; aw 0.98) and incubated under isothermal conditions at 7, 15, 20, 25 and 37 °C. Baranyi and Roberts model was used to describe Salmonella growth curves, generating R values of ≥0.98 and RMSE values of <0.24 log CFU/g/h for primary models. Ratkowsky's equation was used in secondary model, generating R of 0.99 and RMSE of 0.02 log CFU/g/h. The model validation was simulated under non-isothermal conditions, using the worst-case scenario that was built through data from the environmental conditions and data obtained from the restaurants. The non-isothermal conditions were performed at 36.3 °C for 6 h, 10 °C for 24 h and 29.5 °C for 6 h sequentially, reaching 6.7 log CFU/g of Salmonella and generating RMSE of 0.06 log CFU/g/h, Bias factor of 0.97 and Accuracy factor of 1.03. The negligible growth time (ς) for Salmonella, considering the average of higher distribution temperatures of chosen sushi type (approximately 18 °C), was 8.9 h. However, growth rates of total aerobic mesophilic demonstrated that at 15 °C and 20 °C, the lag phases were approximately 11 and 5 h respectively. Based on these results, we suggest for sushi distribution the use of temperatures of ≤15 °C for 6 h (maximum time of distribution allowed in Brazil) considering the Salmonella growth.
在这项研究中,考虑到在巴西南部 26 家餐厅获得的数据,开发了用于预测不同温度下寿司中沙门氏菌生长的数学模型。选择开发模型的寿司类型是在所收集的寿司中总需氧嗜温菌计数最高的一种。在实验室中制备这种寿司类型(pH 值 4.8;aw 值 0.98)并在 7、15、20、25 和 37°C 等温条件下孵育时,接种(2-3 log UFC/g)沙门氏菌。使用 Baranyi 和 Roberts 模型来描述沙门氏菌生长曲线,主要模型的 R 值为≥0.98,RMSE 值为<0.24 log CFU/g/h。在二次模型中使用 Ratkowsky 方程,生成 R 值为 0.99 和 RMSE 值为 0.02 log CFU/g/h。通过使用最差情况场景模拟模型验证,该场景是通过环境条件数据和从餐厅获得的数据构建的。在非等温条件下进行非等温条件,使用的最差情况场景是通过环境条件数据和从餐厅获得的数据构建的。非等温条件下,沙门氏菌依次在 36.3°C 下 6 小时、10°C 下 24 小时和 29.5°C 下 6 小时,达到 6.7 log CFU/g 的沙门氏菌,并产生 0.06 log CFU/g/h 的 RMSE、偏差因子 0.97 和准确度因子 1.03。考虑到所选寿司类型的较高分布温度的平均值(约 18°C),沙门氏菌的可忽略生长时间(ς)为 8.9 小时。然而,总需氧嗜温菌的生长率表明,在 15°C 和 20°C 下,滞后期分别约为 11 小时和 5 小时。基于这些结果,我们建议在考虑沙门氏菌生长的情况下,将 15°C 及以下温度用于寿司配送,时间不超过 6 小时(巴西允许的最长配送时间)。