Suppr超能文献

应用含生物报告系统研究具有大流行潜力的 H5N1 流感病毒获得性功能。

Application of a Biologically Contained Reporter System To Study Gain-of-Function H5N1 Influenza A Viruses with Pandemic Potential.

机构信息

Institute of Medical Virology, University of Zurich, Zurich, Switzerland.

Life Science Zurich Graduate School, ETH and University of Zurich, Zurich, Switzerland.

出版信息

mSphere. 2020 Aug 26;5(4):e00423-20. doi: 10.1128/mSphere.00423-20.

Abstract

Natural adaptation of an antigenically novel avian influenza A virus (IAV) to be transmitted efficiently in humans has the potential to trigger a devastating pandemic. Understanding viral genetic determinants underlying adaptation is therefore critical for pandemic preparedness, as the knowledge gained enhances surveillance and eradication efforts, prepandemic vaccine design, and efficacy assessment of antivirals. However, this work has risks, as making gain-of-function substitutions in fully infectious IAVs may create a pathogen with pandemic potential. Thus, such experiments must be tightly controlled through physical and biological risk mitigation strategies. Here, we applied a previously described biological containment system for IAVs to a 2009 pandemic H1N1 strain and a highly pathogenic H5N1 strain. The system relies on deletion of the essential viral hemagglutinin (HA) gene, which is instead provided in , thereby restricting multicycle virus replication to genetically modified HA-complementing cells. In place of HA, a luciferase gene is inserted within the viral genome, and a live-cell luciferase substrate allows real-time quantitative monitoring of viral replication kinetics with a high dynamic range. We demonstrate that biologically contained IAV-like particles exhibit wild-type sensitivities to approved antivirals, including oseltamivir, zanamivir, and baloxavir. Furthermore, the inability of these IAV-like particles to genetically acquire the host-encoded HA allowed us to introduce gain-of-function substitutions in the H5 HA gene that promote mammalian transmissibility. Biologically contained "transmissible" H5N1 IAV-like particles exhibited wild-type sensitivities to approved antivirals, to the fusion inhibitor S20, and to neutralization by existing H5 monoclonal and polyclonal sera. This work represents a proof of principle that biologically contained IAV systems can be used to safely conduct selected gain-of-function experiments. Understanding how animal influenza viruses can adapt to spread in humans is critical to prepare for, and prevent, new pandemics. However, working safely with pathogens that have pandemic potential requires tight regulation and the use of high-level physical and biological risk mitigation strategies to stop accidental loss of containment. Here, we used a biological containment system for influenza viruses to study strains with pandemic potential. The system relies on deletion of the essential HA gene from the viral genome and its provision by a genetically modified cell line, to which virus propagation is therefore restricted. We show that this method permits safe handling of these pathogens, including gain-of-function variants, without the risk of generating fully infectious viruses. Furthermore, we demonstrate that this system can be used to assess virus sensitivity to both approved and experimental drugs, as well as the antigenic profile of viruses, important considerations for evaluating prepandemic vaccine and antiviral strategies.

摘要

自然发生的抗原性新型禽流感病毒(IAV)在人类中有效传播的适应性有可能引发毁灭性的大流行。因此,了解适应的病毒遗传决定因素对于大流行的防范至关重要,因为这方面的知识可以增强监测和根除工作、大流行前疫苗设计以及抗病毒药物的疗效评估。然而,这项工作存在风险,因为在完全有感染性的 IAV 中进行获得功能的替代可能会产生具有大流行潜力的病原体。因此,此类实验必须通过物理和生物风险缓解策略进行严格控制。在这里,我们应用了以前描述的用于 IAV 的生物遏制系统来研究 2009 年大流行的 H1N1 株和高致病性 H5N1 株。该系统依赖于必需的病毒血凝素(HA)基因的缺失,该基因被取代,而是由遗传修饰的 HA 互补细胞提供,从而限制了多轮病毒复制。在 HA 缺失的情况下,一个荧光素酶基因被插入病毒基因组中,并且活细胞荧光素酶底物允许实时定量监测病毒复制动力学,具有很高的动态范围。我们证明,具有生物遏制的 IAV 样颗粒对批准的抗病毒药物(包括奥司他韦、扎那米韦和巴洛沙韦)表现出与野生型相同的敏感性。此外,这些 IAV 样颗粒无法遗传获得宿主编码的 HA,这使得我们能够在 H5HA 基因中引入促进哺乳动物传播性的获得功能替代。具有生物遏制的“可传播”H5N1IAV 样颗粒对批准的抗病毒药物、融合抑制剂 S20 以及现有 H5 单克隆和多克隆血清的中和作用表现出与野生型相同的敏感性。这项工作证明了一个原理,即具有生物遏制的 IAV 系统可用于安全地进行选定的获得功能实验。了解动物流感病毒如何适应在人类中传播对于为新的大流行做好准备和预防至关重要。然而,安全地处理具有大流行潜力的病原体需要严格的监管,并使用高水平的物理和生物风险缓解策略来阻止意外的遏制失败。在这里,我们使用流感病毒的生物遏制系统来研究具有大流行潜力的菌株。该系统依赖于从病毒基因组中缺失必需的 HA 基因,并由遗传修饰的细胞系提供,因此限制了病毒的繁殖。我们表明,这种方法允许安全处理这些病原体,包括获得功能变体,而不会产生完全有感染性的病毒的风险。此外,我们证明该系统可用于评估病毒对批准药物和实验药物的敏感性,以及病毒的抗原谱,这对于评估大流行前疫苗和抗病毒策略非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验