Suppr超能文献

相变超构器件中光子角动量耦合的多态切换

Multistate Switching of Photonic Angular Momentum Coupling in Phase-Change Metadevices.

作者信息

Zhang Fei, Xie Xin, Pu Mingbo, Guo Yinghui, Ma Xiaoliang, Li Xiong, Luo Jun, He Qiong, Yu Honglin, Luo Xiangang

机构信息

State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.

Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing, 400030, China.

出版信息

Adv Mater. 2020 Oct;32(39):e1908194. doi: 10.1002/adma.201908194. Epub 2020 Aug 26.

Abstract

The coupling between photonic spin and orbital angular momenta is significantly enhanced at the subwavelength scale and has found a plethora of applications in nanophotonics. However, it is still a great challenge to make such kind of coupling tunable with multiple sates. Here, a versatile metasurface platform based on polyatomic phase-change resonators is provided to realize multiple-state switching of photonic angular momentum coupling. As a proof of concept, three coupling modes, namely, symmetric coupling, asymmetric coupling, and no coupling, are experimentally demonstrated at three different crystallization levels of structured Ge Sb Te alloy. In practical applications, coded information can be encrypted in asymmetric mode using the spin degree of freedom, while revealing misleading one without proper phase change or after excessive crystallinity. With these findings, this study may open an exciting direction for subwavelength electromagnetics with unprecedented compactness, allowing to envision applications in active nanophotonics and information security engineering.

摘要

在亚波长尺度下,光子自旋与轨道角动量之间的耦合显著增强,并已在纳米光子学中得到了大量应用。然而,使这种耦合能够在多个状态下实现可调谐仍然是一个巨大的挑战。在此,我们提供了一个基于多原子相变谐振器的通用超表面平台,以实现光子角动量耦合的多状态切换。作为概念验证,在结构化的锗锑碲合金的三个不同结晶水平上,通过实验证明了三种耦合模式,即对称耦合、非对称耦合和无耦合。在实际应用中,编码信息可以利用自旋自由度以非对称模式进行加密,而在没有适当相变或过度结晶后会显示出误导性信息。基于这些发现,本研究可能为具有前所未有的紧凑性的亚波长电磁学开辟一个令人兴奋的方向,有望在有源纳米光子学和信息安全工程中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验