Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China.
J Chem Theory Comput. 2020 Oct 13;16(10):6397-6407. doi: 10.1021/acs.jctc.0c00637. Epub 2020 Sep 9.
Cation-π interactions play a significant role in a host of processes eminently relevant to biology. However, polarization effects arising from the interaction of cations with aromatic moieties have long been recognized to be inadequately described by pairwise additive force fields. In the present work, we address this longstanding shortcoming through the nonbonded FIX (NBFIX) feature of the CHARMM36 force field, modifying pair-specific Lennard-Jones (LJ) parameters, while circumventing the limitations of the Lorentz-Berthelot combination rules. The potentials of mean force (PMFs) characterizing prototypical cation-π interactions in aqueous solutions are first determined using a hybrid quantum mechanical/molecular mechanics (QM/MM) strategy in conjunction with an importance-sampling algorithm. The LJ parameters describing the cation-π pairs are then optimized to match the QM/MM PMFs. The standard binding free energies of nine cation-π complexes, i.e., toluene, -cresol, and 3-methyl-indole interacting with either ammonium, guanidinium, or tetramethylammonium, determined with this new set of parameters agree well with the experimental measurements. Additional simulations were carried out on three different classes of biological objects featuring cation-π interactions, including five individual proteins, three protein-ligand complexes, and two protein-protein complexes. Our results indicate that the description of cation-π interactions is overall improved using NBFIX corrections, compared with the standard pairwise additive force field. Moreover, an accurate binding free energy calculation for a protein-ligand complex containing cation-π interactions (2BOK) shows that using the new parameters, the experimental binding affinity can be reproduced quantitatively. Put together, the present work suggests that the NBFIX parameters optimized here can be broadly utilized in the simulation of proteins in an aqueous solution to enhance the representation of cation-π interactions, at no additional computational cost.
阳离子-π 相互作用在许多与生物学密切相关的过程中起着重要作用。然而,长期以来,人们已经认识到阳离子与芳香族基团相互作用产生的极化效应不能通过基于对力场进行简单加和的方法来充分描述。在本工作中,我们通过 CHARMM36 力场的非键 FIX(NBFIX)功能来解决这一长期存在的问题,对特定于对的 Lennard-Jones(LJ)参数进行修改,同时避免了 Lorentz-Berthelot 组合规则的限制。首先,我们采用混合量子力学/分子力学(QM/MM)策略结合重要抽样算法,确定了水溶液中典型阳离子-π 相互作用的平均力势(PMF)。然后,我们对描述阳离子-π 对的 LJ 参数进行优化,以匹配 QM/MM PMF。用这套新参数确定的九个阳离子-π 配合物(即与铵、胍或四甲基铵相互作用的甲苯、-甲酚和 3-甲基吲哚)的标准结合自由能与实验测量值吻合较好。此外,我们还对包含阳离子-π 相互作用的三类不同生物对象进行了额外的模拟,包括五个单独的蛋白质、三个蛋白质-配体复合物和两个蛋白质-蛋白质复合物。结果表明,与标准的基于对力场相比,使用 NBFIX 校正可以整体上改进阳离子-π 相互作用的描述。此外,对包含阳离子-π 相互作用的蛋白质-配体复合物(2BOK)进行的准确结合自由能计算表明,使用新参数可以定量重现实验结合亲和力。总的来说,本工作表明,这里优化的 NBFIX 参数可以广泛用于在水溶液中模拟蛋白质,以增强阳离子-π 相互作用的表示,而不会增加额外的计算成本。