Suppr超能文献

工程化具有可定制孔隙率和持续药物释放行为的大孔微孔颗粒用于吸入给药。

Engineering large porous microparticles with tailored porosity and sustained drug release behavior for inhalation.

机构信息

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

Chemical & Pharmaceutical Development, Bayer AG, D-42117 Wuppertal, Germany.

出版信息

Eur J Pharm Biopharm. 2020 Oct;155:139-146. doi: 10.1016/j.ejpb.2020.08.021. Epub 2020 Aug 25.

Abstract

Sustained drug delivery is considered as an effective strategy to improve the treatment of local lung diseases. In this context, inhalation administration of large porous microparticles (LPPs) represents promising prospects. However, one major challenge with said delivery technology is to control the drug release pattern (especially to decrease the burst release) while maintaining a low mass density/high porosity, which is of high significance for the aerodynamic behavior of LPP systems. Here, we show how to engineer drug-loaded, biodegradable LPPs with varying microstructure by means of a premix membrane emulsification-solvent evaporation (PME-SE) method using poly(vinyl pyrrolidone) (PVP) as the pore former. The influence of PVP concentration on the physicochemical properties, in-vitro drug release behavior and in-vitro aerodynamic performance of the drug-loaded microparticles was tested. We demonstrated that the PME-SE technique led to LPPs with favorable pore distribution characteristics (i.e., low external but high internal porosity) as a function of the PVP concentration. In general, more PVP conditioned a larger discrepancy of the internal vs. external porosity. When the external porosity of the LPP formulation (15% of PVP during the manufacturing process) was less than 3%, the burst release of the embedded drug was significantly reduced compared to LPPs prepared by a "conventional" emulsification solvent evaporation method. All the formulations prepared by the PME-SE method had aerodynamic properties suitable for inhalation. This is the first report indicating that the microstructure of LPPs can be tailored using the PME-SE technology with PVP as a suitable pore former. Doing so, we designed LPP formulations having full control over the drug release kinetics and aerodynamic behavior.

摘要

持续药物输送被认为是改善局部肺部疾病治疗的有效策略。在这种情况下,大孔多孔微球(LPPs)的吸入给药代表了有前途的前景。然而,这种给药技术的一个主要挑战是控制药物释放模式(特别是降低突释),同时保持低质量密度/高孔隙率,这对于 LPP 系统的空气动力学行为非常重要。在这里,我们展示了如何通过使用聚(乙烯基吡咯烷酮)(PVP)作为孔形成剂的预混膜乳化-溶剂蒸发(PME-SE)方法来设计具有不同微观结构的载药可生物降解 LPPs。测试了 PVP 浓度对载药微球的物理化学性质、体外药物释放行为和体外空气动力学性能的影响。我们证明,PME-SE 技术导致 LPPs 具有有利的孔分布特征(即低外部但高内部孔隙率),这是 PVP 浓度的函数。一般来说,更多的 PVP 导致内部与外部孔隙率之间的差异更大。当 LPP 制剂的外部孔隙率(制造过程中 15%的 PVP)小于 3%时,与通过“常规”乳化溶剂蒸发方法制备的 LPP 相比,嵌入药物的突释显著减少。通过 PME-SE 方法制备的所有制剂都具有适合吸入的空气动力学特性。这是第一个表明可以使用 PME-SE 技术并使用 PVP 作为合适的孔形成剂来定制 LPP 微观结构的报告。通过这样做,我们设计了 LPP 制剂,可以完全控制药物释放动力学和空气动力学行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验