Magboo Rosalie, Drey Nicholas, Cooper Jackie, Byers Heather, Shipolini Alex, Sanders Julie
Department of Perioperative Medicine, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7B, UK.
Division of Nursing, City University of London, Northampton Square, Clerkenwell, London EC1V 0HB, UK.
J Clin Epidemiol. 2020 Dec;128:57-65. doi: 10.1016/j.jclinepi.2020.08.015. Epub 2020 Aug 25.
The objective of this study was to develop and validate a new risk tool (Barts Surgical Infection Risk (B-SIR)) to predict surgical site infection (SSI) risk after all types of adult cardiac surgery, and compare its predictive ability against existing (but procedure-specific) tools: Brompton-Harefield Infection Score (BHIS), Australian Clinical Risk Index (ACRI), National Nosocomial Infection Surveillance (NNIS).
Single-center retrospective analysis of prospectively collected data including 2,449 patients undergoing cardiac surgery between January 2016 and December 2017 in a European tertiary hospital. Thirty-four variables associated with SSI risk after cardiac surgery were collated from three local databases. Independent predictors were identified using stepwise multivariable logistic regression. Bootstrap resampling was conducted to validate the model. Hosmer-Lemeshow goodness-of-fit test was performed to assess calibration of scores.
The B-SIR model was constructed from six independent predictors female gender, body mass index >30, diabetes, left ventricular ejection fraction <45%, peripheral vascular disease and operation type, and the risk estimates were derived. The receiver operating characteristics curve for B-SIR was 0.682, vs. 0.603 for BHIS, 0.618 for ACRI, and 0.482 for the NNIS tool.
B-SIR provides greater predictive power of SSI risk after cardiac surgery compared with existing tools in our population.
本研究的目的是开发并验证一种新的风险工具(巴茨外科感染风险(B-SIR)),以预测各类成人心脏手术后手术部位感染(SSI)的风险,并将其预测能力与现有的(但针对特定手术的)工具进行比较:布朗普顿-哈雷菲尔德感染评分(BHIS)、澳大利亚临床风险指数(ACRI)、国家医院感染监测(NNIS)。
对前瞻性收集的数据进行单中心回顾性分析,数据包括2016年1月至2017年12月期间在一家欧洲三级医院接受心脏手术的2449例患者。从三个本地数据库中整理出与心脏手术后SSI风险相关的34个变量。使用逐步多变量逻辑回归确定独立预测因素。进行自助重采样以验证模型。进行Hosmer-Lemeshow拟合优度检验以评估评分的校准。
B-SIR模型由六个独立预测因素构建而成:女性、体重指数>30、糖尿病、左心室射血分数<45%、外周血管疾病和手术类型,并得出了风险估计值。B-SIR的受试者工作特征曲线为0.682,而BHIS为0.603,ACRI为0.618,NNIS工具为为0.482。
与我们研究人群中的现有工具相比,B-SIR对心脏手术后SSI风险具有更强的预测能力。