Translational Neuroscience Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy.
Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
Biochim Biophys Acta Proteins Proteom. 2020 Dec;1868(12):140531. doi: 10.1016/j.bbapap.2020.140531. Epub 2020 Aug 25.
Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out.
Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2, Shank3, and 16p11.2 mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations.
Biochemical and gene expression mapping in Cntnap2, Shank3, and 16p11.2 failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism.
Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD.
Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.
自闭症谱系障碍(ASD)包括一组异质性的神经发育障碍,其特征是社交互动受损、沟通异常和重复行为。兴奋性突触上离子型 NMDA 和 AMPA 受体以及代谢型谷氨酸受体 5 的功能障碍最近与多种形式的 ASD 有关。尽管有新的证据表明 D-天冬氨酸和 D-丝氨酸是谷氨酸能传递的重要神经调节剂,但尚未对这些 D-氨基酸在自闭症前临床模型中的发生情况进行系统研究。
通过 HPLC 和 qPCR 分析,我们研究了四种 ASD 小鼠模型的脑和血清中的 D-天冬氨酸和 D-丝氨酸代谢。这些模型包括 BTBR 小鼠,一种自闭症的特发性模型,以及 Cntnap2、Shank3 和 16p11.2 小鼠,这三种遗传小鼠模型重现了高可信度的自闭症相关突变。
Cntnap2、Shank3 和 16p11.2 的生化和基因表达图谱未能发现 D-天冬氨酸和 D-丝氨酸代谢的大脑和血清的明显变化。相反,我们发现内交 BTBR 小鼠的前额叶皮层、海马体和血清中出现了惊人的、立体选择性的 D-天冬氨酸含量增加。与生化评估一致,在相同的脑区,我们还发现编码负责 D-天冬氨酸分解代谢的酶的 d-天冬氨酸氧化酶的 mRNA 水平显著降低。
我们的研究结果表明,在一种广泛使用的自闭症特发性动物模型中存在 D-天冬氨酸代谢紊乱。
总体而言,这项工作呼吁更深入地研究 D-氨基酸在 ASD 和相关发育障碍的发病机制中的作用。