Suppr超能文献

靶向 sAC 依赖性 cAMP 池以预防 SARS-CoV-2 感染。

Targeting the sAC-Dependent cAMP Pool to Prevent SARS-Cov-2 Infection.

机构信息

Experimental Cardiology, Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany.

DZHK (German Centre for Cardiovascular Research), Department of Cardiology, Kerckhoff Clinic GmbH partner site Rhein-Main, 61231 Bad Nauheim, Germany.

出版信息

Cells. 2020 Aug 25;9(9):1962. doi: 10.3390/cells9091962.

Abstract

An outbreak of the novel coronavirus (CoV) SARS-CoV-2, the causative agent of COVID-19 respiratory disease, infected millions of people since the end of 2019, led to high-level morbidity and mortality and caused worldwide social and economic disruption. There are currently no antiviral drugs available with proven efficacy or vaccines for its prevention. An understanding of the underlying cellular mechanisms involved in virus replication is essential for repurposing the existing drugs and/or the discovery of new ones. Endocytosis is the important mechanism of entry of CoVs into host cells. Endosomal maturation followed by the fusion with lysosomes are crucial events in endocytosis. Late endosomes and lysosomes are characterized by their acidic pH, which is generated by a proton transporter V-ATPase and required for virus entry via endocytic pathway. The cytoplasmic cAMP pool produced by soluble adenylyl cyclase (sAC) promotes V-ATPase recruitment to endosomes/lysosomes and thus their acidification. In this review, we discuss targeting the sAC-specific cAMP pool as a potential strategy to impair the endocytic entry of the SARS-CoV-2 into the host cell. Furthermore, we consider the potential impact of sAC inhibition on CoV-induced disease via modulation of autophagy and apoptosis.

摘要

自 2019 年底以来,新型冠状病毒(CoV)SARS-CoV-2 引发的 COVID-19 呼吸道疾病已感染数百万人,导致高发病率和死亡率,并造成全球社会和经济混乱。目前尚无已证明有效的抗病毒药物或疫苗可用于预防。了解病毒复制所涉及的基本细胞机制对于重新利用现有药物和/或发现新药物至关重要。内吞作用是 CoV 进入宿主细胞的重要机制。内体成熟后与溶酶体融合是内吞作用的关键事件。晚期内体和溶酶体的特点是酸性 pH 值,这是由质子转运 V-ATPase 产生的,对于通过内吞途径进入病毒是必需的。可溶性腺苷酸环化酶(sAC)产生的细胞质 cAMP 池促进 V-ATPase 募集到内体/溶酶体,从而使它们酸化。在这篇综述中,我们讨论了靶向 sAC 特异性 cAMP 池作为一种潜在策略来削弱 SARS-CoV-2 进入宿主细胞的内吞作用。此外,我们还考虑了通过调节自噬和细胞凋亡,sAC 抑制对 CoV 诱导疾病的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b65/7563949/bf0ea331fcf3/cells-09-01962-g001.jpg

相似文献

1
Targeting the sAC-Dependent cAMP Pool to Prevent SARS-Cov-2 Infection.
Cells. 2020 Aug 25;9(9):1962. doi: 10.3390/cells9091962.
2
Drug Discovery Strategies for SARS-CoV-2.
J Pharmacol Exp Ther. 2020 Oct;375(1):127-138. doi: 10.1124/jpet.120.000123. Epub 2020 Jul 28.
3
Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19.
Int J Biol Sci. 2020 Mar 15;16(10):1724-1731. doi: 10.7150/ijbs.45498. eCollection 2020.
4
The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target.
Int J Mol Sci. 2020 May 17;21(10):3544. doi: 10.3390/ijms21103544.
7
On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2.
Cell Death Dis. 2020 Aug 19;11(8):656. doi: 10.1038/s41419-020-02842-x.
8
9
[SARS-CoV-2 protease: an excellent target to develop drugs against COVID-19].
Med Sci (Paris). 2020 Jun-Jul;36(6-7):555-558. doi: 10.1051/medsci/2020106. Epub 2020 Jun 19.
10
SARS-CoV-2 RNA polymerase as target for antiviral therapy.
J Transl Med. 2020 May 5;18(1):185. doi: 10.1186/s12967-020-02355-3.

引用本文的文献

1
Editorial: Advances in cAMP signaling research: basic and translational aspects.
Front Physiol. 2023 Sep 1;14:1266718. doi: 10.3389/fphys.2023.1266718. eCollection 2023.
5
Repurposing BCL-2 and Jak 1/2 inhibitors: Cure and treatment of HIV-1 and other viral infections.
Front Immunol. 2022 Dec 9;13:1033672. doi: 10.3389/fimmu.2022.1033672. eCollection 2022.
6
SARS-CoV-2 infection activates CREB/CBP in cellular cyclic AMP-dependent pathways.
J Med Virol. 2023 Jan;95(1):e28383. doi: 10.1002/jmv.28383.
7
Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19.
Int J Biol Sci. 2022 Jul 11;18(12):4690-4703. doi: 10.7150/ijbs.72544. eCollection 2022.
9
Distinct Metabolic Profile Associated with a Fatal Outcome in COVID-19 Patients during the Early Epidemic in Italy.
Microbiol Spectr. 2021 Oct 31;9(2):e0054921. doi: 10.1128/Spectrum.00549-21. Epub 2021 Sep 1.
10
Curcumin as a Potential Treatment for COVID-19.
Front Pharmacol. 2021 May 7;12:675287. doi: 10.3389/fphar.2021.675287. eCollection 2021.

本文引用的文献

1
Outcomes of Hydroxychloroquine Usage in United States Veterans Hospitalized with COVID-19.
Med. 2020 Dec 18;1(1):114-127.e3. doi: 10.1016/j.medj.2020.06.001. Epub 2020 Jun 5.
2
Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection.
Cell Rep Med. 2020 Jul 21;1(4):100052. doi: 10.1016/j.xcrm.2020.100052. Epub 2020 Jun 29.
3
Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19.
N Engl J Med. 2020 Nov 19;383(21):2041-2052. doi: 10.1056/NEJMoa2019014. Epub 2020 Jul 23.
5
Neurological Involvement in COVID-19 and Potential Mechanisms: A Review.
Neurocrit Care. 2021 Jun;34(3):1062-1071. doi: 10.1007/s12028-020-01049-4.
6
Cytologic and molecular correlates of SARS-CoV-2 infection of the nasopharynx.
Ann Diagn Pathol. 2020 Oct;48:151565. doi: 10.1016/j.anndiagpath.2020.151565. Epub 2020 Jul 7.
7
Extrapulmonary manifestations of COVID-19.
Nat Med. 2020 Jul;26(7):1017-1032. doi: 10.1038/s41591-020-0968-3. Epub 2020 Jul 10.
8
Correlation between cytokines and coagulation-related parameters in patients with coronavirus disease 2019 admitted to ICU.
Clin Chim Acta. 2020 Nov;510:47-53. doi: 10.1016/j.cca.2020.07.002. Epub 2020 Jul 6.
9
Canonical and Noncanonical Autophagy as Potential Targets for COVID-19.
Cells. 2020 Jul 5;9(7):1619. doi: 10.3390/cells9071619.
10
Targeting JAK-STAT Signaling to Control Cytokine Release Syndrome in COVID-19.
Trends Pharmacol Sci. 2020 Aug;41(8):531-543. doi: 10.1016/j.tips.2020.06.007. Epub 2020 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验