Suppr超能文献

利用筛查数据估计非浸润性导管原位乳腺癌病变的自然进程。

Estimating the natural progression of non-invasive ductal carcinoma in situ breast cancer lesions using screening data.

机构信息

Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway.

Department of Data Sciences, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, USA.

出版信息

J Med Screen. 2021 Sep;28(3):302-310. doi: 10.1177/0969141320945736. Epub 2020 Aug 27.

Abstract

OBJECTIVES

In addition to invasive breast cancer, mammography screening often detects preinvasive ductal carcinoma in situ (DCIS) lesions. The natural progression of DCIS is largely unknown, leading to uncertainty regarding treatment. The natural history of invasive breast cancer has been studied using screening data. DCIS modeling is more complicated because lesions might progress to clinical DCIS, preclinical invasive cancer, or may also regress to a state undetectable by screening. We have here developed a Markov model for DCIS progression, building on the established invasive breast cancer model.

METHODS

We present formulas for the probability of DCIS detection by time since last screening under a Markov model of DCIS progression. Progression rates were estimated by maximum likelihood estimation using BreastScreen Norway data from 1995-2002 for 336,533 women (including 399 DCIS cases) aged 50-69. As DCIS incidence varies by age, county, and mammography modality (digital vs. analog film), a Poisson regression approach was used to align the input data.

RESULTS

Estimated mean sojourn time in preclinical, screening-detectable DCIS phase was 3.1 years (95% confidence interval: 1.3, 7.6) with a screening sensitivity of 60% (95% confidence interval: 32%, 93%). No DCIS was estimated to be non-progressive.

CONCLUSION

Most preclinical DCIS lesions progress or regress with a moderate sojourn time in the screening-detectable phase. While DCIS mean sojourn time could be deduced from DCIS data, any estimate of preclinical DCIS progressing to invasive breast cancer must include data on invasive cancers to avoid strong, probably unrealistic, assumptions.

摘要

目的

除浸润性乳腺癌外,乳房 X 线照相筛查还常检出导管原位癌(DCIS)病变。DCIS 的自然进展过程很大程度上是未知的,导致治疗存在不确定性。浸润性乳腺癌的自然史已通过筛查数据进行了研究。DCIS 建模更为复杂,因为病变可能进展为临床 DCIS、临床前浸润性癌,也可能消退至筛查无法检测的状态。我们在此基础上建立了一个 DCIS 进展的马尔可夫模型,建立在已建立的浸润性乳腺癌模型之上。

方法

我们提出了在 DCIS 进展的马尔可夫模型下,根据上次筛查时间计算 DCIS 检出概率的公式。使用挪威乳腺癌筛查 1995-2002 年的数据,通过最大似然估计,对 336533 名年龄在 50-69 岁的女性(包括 399 例 DCIS 病例)进行了进展率估计。由于 DCIS 的发病率因年龄、县和乳房 X 线照相方式(数字与模拟胶片)而异,因此使用泊松回归方法对齐输入数据。

结果

无临床症状的 DCIS 潜伏期的估计平均时间为 3.1 年(95%置信区间:1.3,7.6),筛查灵敏度为 60%(95%置信区间:32%,93%)。没有 DCIS 被估计为非进展性。

结论

大多数无临床症状的 DCIS 病变会在筛查可检出的阶段进展或消退,潜伏期适中。虽然 DCIS 潜伏期的平均值可以从 DCIS 数据中推断出来,但任何关于无临床症状的 DCIS 进展为浸润性乳腺癌的估计都必须包括浸润性癌症的数据,以避免强烈的、可能不现实的假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验