Moreno Javier Robledo, Carleo Giuseppe, Georges Antoine
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
Center for Quantum Phenomena, Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA.
Phys Rev Lett. 2020 Aug 14;125(7):076402. doi: 10.1103/PhysRevLett.125.076402.
A striking consequence of the Hohenberg-Kohn theorem of density functional theory is the existence of a bijection between the local density and the ground-state many-body wave function. Here we study the problem of constructing approximations to the Hohenberg-Kohn map using a statistical learning approach. Using supervised deep learning with synthetic data, we show that this map can be accurately constructed for a chain of one-dimensional interacting spinless fermions in different phases of this model including the charge ordered Mott insulator and metallic phases and the critical point separating them. However, we also find that the learning is less effective across quantum phase transitions, suggesting an intrinsic difficulty in efficiently learning nonsmooth functional relations. We further study the problem of directly reconstructing complex observables from simple local density measurements, proposing a scheme amenable to statistical learning from experimental data.
密度泛函理论的 Hohenberg-Kohn 定理的一个显著结果是,局部密度与基态多体波函数之间存在双射关系。在此,我们使用统计学习方法研究构建 Hohenberg-Kohn 映射近似的问题。通过对合成数据使用监督深度学习,我们表明,对于该模型不同相中的一维相互作用无自旋费米子链,包括电荷有序的莫特绝缘体和金属相以及将它们分开的临界点,此映射都可以精确构建。然而,我们还发现,跨量子相变的学习效果较差,这表明在有效学习非光滑函数关系方面存在内在困难。我们进一步研究了从简单的局部密度测量直接重建复杂可观测量的问题,提出了一种适合从实验数据进行统计学习的方案。