Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
Toxicology. 2020 Nov;444:152543. doi: 10.1016/j.tox.2020.152543. Epub 2020 Aug 26.
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zncaused a lower blockade of I, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Znconcentrations. Voltage-dependent potassium current was marginally affected by high Zn concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC of 453 μM. This blockade was related to the prevention of Ca influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na and Ca-channels, and terminated by the activation of voltage and Ca-activated K-channels (BK). We found that the blockade of these ionic currents by Zn led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
本工作使用大鼠肾上腺切片中的嗜铬细胞(RCCs),旨在描述锌诱导的哪种离子电流改变是其报道的突触传递效应的基础。因此,锌以时间和浓度依赖的方式阻断 RCCs 的钙通道,IC 为 391 μM。这种阻断在冲洗后部分逆转,并且在更去极化的保持电位下更大(即在 -110 mV 下为 32 ± 5%,在 -50 mV 下为 43 ± 6%,在 5 分钟灌注后)。在 ω-毒素敏感的钙通道(N-、P-和 Q-型)中,Zncause 的 I 阻断作用较小,为 33.3%,而在 ω-毒素抗性钙通道(L-型和 R-型)中为 55.3%和 90%。该化合物在所有测试电位下抑制钙电流,并使 I-V 曲线向约 10 mV 的更去极化值偏移。急性应用高浓度锌不会阻断钠电流。高浓度锌对电压依赖性钾电流的影响较小,没有浓度依赖性。然而,钙和电压依赖性钾电流呈剂量依赖性急剧抑制,IC 为 453 μM。这种阻断与通过与 BK 通道偶联的电压依赖性钙通道的 Ca 内流的预防有关。在电流钳条件下,RCCs 表现出 -50.7 mV 的静息电位,自发发射 APs(1-2 个 spikes/s),由 Na 和 Ca 通道的开放产生,并通过电压和 Ca 激活的 K 通道(BK)的激活终止。我们发现,锌对这些离子电流的阻断导致细胞膜电位的去极化、AP 的减慢和变宽以及后超极化(AHP)的严重减少,从而导致 APs 发射频率降低,从而导致细胞兴奋性的剧烈改变。综上所述,这些结果表明锌引起的神经毒性作用与通过阻断负责神经递质释放和动作电位发射的离子电流来改变细胞兴奋性有关。