MAP program, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
Curematch Inc., 6440 Lusk Blvd, Suite D206, San Diego, CA 92121, USA.
Molecules. 2020 Aug 26;25(17):3886. doi: 10.3390/molecules25173886.
A significant percentage of Duchenne muscular dystrophy (DMD) cases are caused by premature termination codon (PTC) mutations in the dystrophin gene, leading to the production of a truncated, non-functional dystrophin polypeptide. PTC-suppressing compounds (PTCSC) have been developed in order to restore protein translation by allowing the incorporation of an amino acid in place of a stop codon. However, limitations exist in terms of efficacy and toxicity. To identify new compounds that have PTC-suppressing ability, we selected and clustered existing PTCSC, allowing for the construction of a common pharmacophore model. Machine learning (ML) and deep learning (DL) models were developed for prediction of new PTCSC based on known compounds. We conducted a search of the NCI compounds database using the pharmacophore-based model and a search of the DrugBank database using pharmacophore-based, ML and DL models. Sixteen drug compounds were selected as a consensus of pharmacophore-based, ML, and DL searches. Our results suggest notable correspondence of the pharmacophore-based, ML, and DL models in prediction of new PTC-suppressing compounds.
很大比例的杜氏肌营养不良症(DMD)是由于抗肌萎缩蛋白基因中的提前终止密码子(PTC)突变引起的,导致产生截短的、无功能的抗肌萎缩蛋白多肽。为了通过允许用氨基酸替代终止密码子来恢复蛋白质翻译,已经开发了 PTC 抑制化合物(PTCSC)。然而,在疗效和毒性方面存在限制。为了确定具有 PTC 抑制能力的新化合物,我们选择并聚类了现有的 PTCSC,从而构建了一个共同的药效团模型。基于已知化合物,使用机器学习(ML)和深度学习(DL)模型来开发预测新的 PTCSC 的模型。我们使用基于药效团的模型对 NCI 化合物数据库进行搜索,并使用基于药效团的、ML 和 DL 模型对 DrugBank 数据库进行搜索。选择了 16 种药物化合物作为基于药效团的、ML 和 DL 搜索的共识。我们的结果表明,基于药效团的、ML 和 DL 模型在预测新的 PTC 抑制化合物方面具有显著的一致性。