Suppr超能文献

识别超重或肥胖孕妇的 ActiGraph 非活动时间。

Identifying ActiGraph non-wear time in pregnant women with overweight or obesity.

机构信息

Exercise Psychology Laboratory, Department of Kinesiology, The Pennsylvania State University, United States.

Department of Nutritional Sciences and Center for Childhood Obesity Research, The Pennsylvania State University, United States.

出版信息

J Sci Med Sport. 2020 Dec;23(12):1197-1201. doi: 10.1016/j.jsams.2020.08.003. Epub 2020 Aug 11.

Abstract

OBJECTIVES

Non-wear time algorithms have not been validated in pregnant women with overweight/obesity (PW-OW/OB), potentially leading to misclassification of sedentary/activity data, and inaccurate estimates of how physical activity is associated with pregnancy outcomes. We examined: (1) validity/reliability of non-wear time algorithms in PW-OW/OB by comparing wear time from five algorithms to a self-report criterion and (2) whether these algorithms over- or underestimated sedentary behaviors.

DESIGN

PW-OW/OB (N = 19) from the Healthy Mom Zone randomized controlled trial wore an ActiGraph GT3x + for 7 consecutive days between 8-12 weeks gestation.

METHODS

Non-wear algorithms (i.e., consecutive strings of zero acceleration in 60-second epochs) were tested at 60, 90, 120, 150, and 180-min. The monitor registered sedentary minutes as activity counts 0-99. Women completed daily self-report logs to report wear time.

RESULTS

Intraclass correlation coefficients for each algorithm were 0.96-0.97; Bland-Altman plots revealed no bias; mean absolute percent errors were <10%. Compared to self-report (M = 829.5, SD = 62.1), equivalency testing revealed algorithm wear times (min/day) were equivalent: 60- (M = 816.4, SD = 58.4), 90- (M = 827.5, SD = 61.4), 120- (M = 830.8, SD = 65.2), 150- (M = 833.8, SD = 64.6) and 180-min (M = 837.4, SD = 65.4). Repeated measures ANOVA showed 60- and 90-min algorithms may underestimate sedentary minutes compared to 150- and 180-min algorithms.

CONCLUSIONS

The 60, 90, 120, 150, and 180-min algorithms are valid and reliable for estimating wear time in PW-OW/OB. However, implementing algorithms with a higher threshold for consecutive zero counts (i.e., ≥150-min) can avoid the risk of misclassifying sedentary data.

摘要

目的

超重/肥胖孕妇(PW-OW/OB)的非佩戴时间算法尚未得到验证,这可能导致久坐/活动数据的分类错误,并对身体活动与妊娠结局的关联的估计不准确。我们研究了:(1)通过将五种算法的佩戴时间与自我报告标准进行比较,来检验 PW-OW/OB 中非佩戴时间算法的有效性/可靠性;(2)这些算法是否高估或低估了久坐行为。

设计

来自 Healthy Mom Zone 随机对照试验的 PW-OW/OB(N=19)在妊娠 8-12 周期间连续佩戴 ActiGraph GT3x+7 天。

方法

在 60、90、120、150 和 180 分钟时测试非佩戴算法(即 60 秒时连续的零加速度串)。监测器将久坐分钟记录为活动计数 0-99。女性每天完成自我报告日志以报告佩戴时间。

结果

每个算法的组内相关系数为 0.96-0.97;Bland-Altman 图显示没有偏差;平均绝对百分比误差<10%。与自我报告(M=829.5,SD=62.1)相比,等效性检验显示算法佩戴时间(分钟/天)相当:60-(M=816.4,SD=58.4),90-(M=827.5,SD=61.4),120-(M=830.8,SD=65.2),150-(M=833.8,SD=64.6)和 180 分钟(M=837.4,SD=65.4)。重复测量方差分析显示,与 150 分钟和 180 分钟算法相比,60 分钟和 90 分钟算法可能低估了久坐时间。

结论

60、90、120、150 和 180 分钟算法可有效可靠地估计 PW-OW/OB 的佩戴时间。然而,使用具有更高连续零计数阈值(即≥150 分钟)的算法可以避免将久坐数据分类错误的风险。

相似文献

1
Identifying ActiGraph non-wear time in pregnant women with overweight or obesity.
J Sci Med Sport. 2020 Dec;23(12):1197-1201. doi: 10.1016/j.jsams.2020.08.003. Epub 2020 Aug 11.
2
Concurrent validity of the Fitbit for assessing sedentary behavior and moderate-to-vigorous physical activity.
BMC Med Res Methodol. 2019 Feb 7;19(1):29. doi: 10.1186/s12874-019-0668-1.
3
Identifying accelerometer nonwear and wear time in older adults.
Int J Behav Nutr Phys Act. 2013 Oct 25;10:120. doi: 10.1186/1479-5868-10-120.
4
Validity of objective methods for measuring sedentary behaviour in older adults: a systematic review.
Int J Behav Nutr Phys Act. 2018 Nov 26;15(1):119. doi: 10.1186/s12966-018-0749-2.
5
Accelerometer data reduction in adolescents: effects on sample retention and bias.
Int J Behav Nutr Phys Act. 2013 Dec 23;10:140. doi: 10.1186/1479-5868-10-140.
7
A comparison of 10 accelerometer non-wear time criteria and logbooks in children.
BMC Public Health. 2018 Mar 6;18(1):323. doi: 10.1186/s12889-018-5212-4.
10
Identifying sedentary time using automated estimates of accelerometer wear time.
Br J Sports Med. 2012 May;46(6):436-42. doi: 10.1136/bjsm.2010.079699. Epub 2011 Apr 18.

引用本文的文献

1
2
Does Prenatal Physical Activity Affect the Occurrence of Postnatal Anxiety and Depression? Longitudinal Study.
Int J Environ Res Public Health. 2022 Feb 17;19(4):2284. doi: 10.3390/ijerph19042284.

本文引用的文献

1
Validity of objective methods for measuring sedentary behaviour in older adults: a systematic review.
Int J Behav Nutr Phys Act. 2018 Nov 26;15(1):119. doi: 10.1186/s12966-018-0749-2.
2
Patterns of leisure-time physical activity across pregnancy and adverse pregnancy outcomes.
Int J Behav Nutr Phys Act. 2018 Jul 11;15(1):68. doi: 10.1186/s12966-018-0701-5.
3
Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers.
Prev Med Rep. 2018 Apr 19;10:337-345. doi: 10.1016/j.pmedr.2018.04.012. eCollection 2018 Jun.
5
A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement.
Med Sci Sports Exerc. 2018 Apr;50(4):837-845. doi: 10.1249/MSS.0000000000001481.
7
Leisure time physical activity among pregnant women and its associations with maternal characteristics and pregnancy outcomes.
Sex Reprod Healthc. 2016 Oct;9:14-20. doi: 10.1016/j.srhc.2016.03.006. Epub 2016 May 16.
8
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.
J Chiropr Med. 2016 Jun;15(2):155-63. doi: 10.1016/j.jcm.2016.02.012. Epub 2016 Mar 31.
9
ACOG Committee Opinion No. 650: Physical Activity and Exercise During Pregnancy and the Postpartum Period.
Obstet Gynecol. 2015 Dec;126(6):e135-e142. doi: 10.1097/AOG.0000000000001214.
10
The current state of physical activity assessment tools.
Prog Cardiovasc Dis. 2015 Jan-Feb;57(4):387-95. doi: 10.1016/j.pcad.2014.10.005. Epub 2014 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验