Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China; Meituan-Dianping Group, China.
Xiamen Data Intelligence Academy of ICT, CAS, China; Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China.
Neural Netw. 2020 Dec;132:75-83. doi: 10.1016/j.neunet.2020.08.015. Epub 2020 Aug 20.
Recent years have witnessed the increasing popularity of Location-based Social Network (LBSN) services, which provides unparalleled opportunities to build personalized Point-of-Interest (POI) recommender systems. Existing POI recommendation and location prediction tasks utilize past information for future recommendation or prediction from a single direction perspective, while the missing POI category identification task needs to utilize the check-in information both before and after the missing category. Therefore, a long-standing challenge is how to effectively identify the missing POI categories at any time in the real-world check-in data of mobile users. To this end, in this paper, we propose a novel neural network approach to identify the missing POI categories by integrating both bi-directional global non-personal transition patterns and personal preferences of users. Specifically, we delicately design an attention matching cell to model how well the check-in category information matches their non-personal transition patterns and personal preferences. Finally, we evaluate our model on two real-world datasets, which clearly validate its effectiveness compared with the state-of-the-art baselines. Furthermore, our model can be naturally extended to address next POI category recommendation and prediction tasks with competitive performance.
近年来,基于位置的社交网络(LBSN)服务越来越受欢迎,为构建个性化的兴趣点(POI)推荐系统提供了前所未有的机会。现有的 POI 推荐和位置预测任务利用过去的信息从单一方向进行未来的推荐或预测,而缺失的 POI 类别识别任务需要利用缺失类别前后的签到信息。因此,一个长期存在的挑战是如何在移动用户的真实签到数据中有效地识别任何时间缺失的 POI 类别。为此,在本文中,我们提出了一种新的神经网络方法,通过整合双向全局非个人转换模式和用户的个人偏好来识别缺失的 POI 类别。具体来说,我们精心设计了一个注意力匹配单元,以模型化签到类别信息与其非个人转换模式和个人偏好的匹配程度。最后,我们在两个真实数据集上评估了我们的模型,与最先进的基线相比,该模型的有效性得到了清晰验证。此外,我们的模型可以自然地扩展到解决具有竞争力的性能的下一个 POI 类别推荐和预测任务。