Suppr超能文献

一项关于通过对牛脊髓膜进行脱细胞处理来开发用于组织工程应用的新型生物基质的初步研究。

A preliminary study on the development of a novel biomatrix by decellularization of bovine spinal meninges for tissue engineering applications.

作者信息

Ozudogru Eren, Arslan Yavuz Emre

机构信息

Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey.

出版信息

Cell Tissue Bank. 2021 Mar;22(1):25-38. doi: 10.1007/s10561-020-09859-8. Epub 2020 Aug 30.

Abstract

Here, we aim at developing a novel biomatrix from decellularized bovine spinal meninges for tissue engineering and regenerative medicine applications. Within this concept, the bovine spinal meninges were decellularized using 1% Triton X-100 for 48 h, and residual nuclear content was determined with double-strand DNA content analysis and agarose gel electrophoresis. The major matrix components such as sulfated GAGs and collagen before and after the decellularization process were analyzed with DMMB, hydroxyproline assay and SDS-PAGE. Subsequently, the native bovine spinal meninges (nBSM) and decellularized BSM (dBSM) were physiochemically characterized via ATR-FTIR spectroscopy, TGA, DMA and tensile strength test. The dsDNA content in the nBSM was 153.39 ± 53.93 ng/mg dry weight, versus in the dBSM was 39.47 ± 4.93 ng/mg (n = 3) dry weight and DNA fragments of more than 200 bp in length were not detected in the dBSM by agarose gel electrophoresis. The sulfated GAGs contents for nBSM and dBSM were observed to be 10.87 ± 1.2 and 11.42 ± 2.01 μg/mg dry weight, respectively. The maximum strength of dBSM in dry and wet conditions was found to be 19.67 ± 0.21 MPa and 13.97 ± 0.17 MPa, while nBSM (dry) was found to be 26.26 ± 0.28 MPa. MTT, SEM, and histology results exhibited that the cells attached to the surface of dBSM, and proliferated on the dBSM. In conclusion, the in vitro preliminary study has demonstrated that the dBSM might be a proper and new bioscaffold for tissue engineering and regenerative medicine applications.

摘要

在此,我们旨在从脱细胞牛脊髓膜开发一种新型生物基质,用于组织工程和再生医学应用。在此概念下,使用1% Triton X-100将牛脊髓膜脱细胞处理48小时,并通过双链DNA含量分析和琼脂糖凝胶电泳测定残留核含量。脱细胞处理前后的主要基质成分,如硫酸化糖胺聚糖和胶原蛋白,通过DMMB、羟脯氨酸测定和SDS-PAGE进行分析。随后,通过ATR-FTIR光谱、TGA、DMA和拉伸强度测试对天然牛脊髓膜(nBSM)和脱细胞牛脊髓膜(dBSM)进行物理化学表征。nBSM中的双链DNA含量为153.39±53.93 ng/mg干重,而dBSM中的双链DNA含量为39.47±4.93 ng/mg(n = 3)干重,并且通过琼脂糖凝胶电泳在dBSM中未检测到长度超过200 bp的DNA片段。nBSM和dBSM的硫酸化糖胺聚糖含量分别观察为10.87±1.2和11.42±2.01 μg/mg干重。发现dBSM在干燥和湿润条件下的最大强度分别为19.67±0.21 MPa和13.97±0.17 MPa,而nBSM(干燥)为26.26±0.28 MPa。MTT、SEM和组织学结果表明,细胞附着在dBSM表面并在dBSM上增殖。总之,体外初步研究表明,dBSM可能是用于组织工程和再生医学应用的合适新型生物支架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验