Suppr超能文献

探索动态护理环境中通信网络指标的稳定性

Exploring the Stability of Communication Network Metrics in a Dynamic Nursing Context.

作者信息

Brewer Barbara B, Carley Kathleen M, Benham-Hutchins Marge, Effken Judith A, Reminga Jeffrey

机构信息

The University of Arizona.

Carnegie Mellon University.

出版信息

Soc Networks. 2020 May;61:11-19. doi: 10.1016/j.socnet.2019.08.003. Epub 2019 Sep 4.

Abstract

Network stability is of increasing interest to researchers as they try to understand the dynamic processes by which social networks form and evolve. Because hospital patient care units (PCUs) need flexibility to adapt to environmental changes (Vardaman, Cornell, & Clancy, 2012), their networks are unlikely to be uniformly stable and will evolve over time. This study aimed to identify a metric (or set of metrics) sufficiently stable to apply to PCU staff information sharing and advice seeking communication networks over time. Using Coefficient of Variation, we assessed both Across Time Stability (ATS) and Global Stability over four data collection times (Baseline and 1, 4, and 7 months later). When metrics were stable using both methods, we considered them "super stable." Nine metrics met that criterion (Node Set Size, Average Distance, Clustering Coefficient, Density, Weighted Density, Diffusion, Total Degree Centrality, Betweenness Centrality, and Eigenvector Centrality). Unstable metrics included Hierarchy, Fragmentation, Isolate Count, and Clique Count. We also examined the effect of staff members' confidence in the information obtained from other staff members. When confidence was high, the "super stable" metrics remained "super stable," but when low, none of the "super stable" metrics persisted as "super stable." Our results suggest that nursing units represent what Barker (1968) termed dynamic behavior settings in which, as is typical, multiple nursing staff must constantly adjust to various circumstances, primarily through communication (e.g., discussing patient care or requesting advice on providing patient care), to preserve the functional integrity (i.e., ability to meet patient care goals) of the units, thus producing the observed stability over time of nine network metrics. The observed metric stability provides support for using network analysis to study communication patterns in dynamic behavior settings such as PCUs.

摘要

随着研究人员试图理解社交网络形成和演化的动态过程,网络稳定性越来越受到他们的关注。由于医院的病人护理单元(PCU)需要灵活性以适应环境变化(瓦尔达曼、康奈尔和克兰西,2012年),其网络不太可能始终保持稳定,而是会随着时间的推移而演变。本研究旨在确定一种足够稳定的指标(或一组指标),以便随时间应用于PCU工作人员的信息共享和寻求建议的通信网络。我们使用变异系数,在四个数据收集时间点(基线以及1个月、4个月和7个月后)评估了跨时间稳定性(ATS)和全局稳定性。当两种方法都表明指标稳定时,我们将其视为“超级稳定”。九个指标符合该标准(节点集大小、平均距离、聚类系数、密度、加权密度、扩散、总度数中心性、中介中心性和特征向量中心性)。不稳定的指标包括层次结构、碎片化、孤立节点数和团簇数。我们还研究了工作人员对从其他工作人员那里获得的信息的信心的影响。当信心高时,“超级稳定”指标仍然“超级稳定”,但当信心低时,没有一个“超级稳定”指标能持续保持“超级稳定”。我们的研究结果表明,护理单元代表了巴克(1968年)所说的动态行为环境,在这种环境中,通常情况下,多名护理人员必须主要通过沟通(例如,讨论病人护理或寻求提供病人护理的建议)不断适应各种情况,以维护单元的功能完整性(即实现病人护理目标的能力),从而产生了观察到的九个网络指标随时间的稳定性。观察到的指标稳定性为使用网络分析研究诸如PCU等动态行为环境中的通信模式提供了支持。

相似文献

5
Critical Care Network in the State of Qatar.卡塔尔国重症监护网络。
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.

本文引用的文献

3
Health care provider social network analysis: A systematic review.医疗服务提供者社交网络分析:一项系统综述。
Nurs Outlook. 2015 Sep-Oct;63(5):566-84. doi: 10.1016/j.outlook.2015.05.006. Epub 2015 Jun 6.
4
Complexity and change in nurse workflows.护士工作流程的复杂性与变化
J Nurs Adm. 2012 Feb;42(2):78-82. doi: 10.1097/NNA.0b013e3182433677.
9
Understanding complex interactions using social network analysis.利用社会网络分析理解复杂的相互作用。
J Clin Nurs. 2012 Oct;21(19-20):2772-9. doi: 10.1111/j.1365-2702.2011.04036.x. Epub 2012 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验