Suppr超能文献

将发电厂的碳捕获与用于微藻培养的半自动开放式跑道池塘相结合。

Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation.

作者信息

Acedo Margarita, Gonzalez Cena Juan R, Kiehlbaugh Kasi M, Ogden Kimberly L

机构信息

Department of Chemical and Environmental Engineering, University of Arizona.

Department of Biosystems Engineering, University of Arizona.

出版信息

J Vis Exp. 2020 Aug 14(162). doi: 10.3791/61498.

Abstract

In the United States, 35% of the total carbon dioxide (CO2) emissions come from the electrical power industry, of which 30% represent natural gas electricity generation. Microalgae can biofix CO2 10 to 15 times faster than plants and convert algal biomass to products of interest, such as biofuels. Thus, this study presents a protocol that demonstrates the potential synergies of microalgae cultivation with a natural gas power plant situated in the southwestern United States in a hot semi-arid climate. State-of-the-art technologies are used to enhance carbon capture and utilization via the green algal species Chlorella sorokiniana, which can be further processed into biofuel. We describe a protocol involving a semi-automated open raceway pond and discuss the results of its performance when it was tested at the Tucson Electric Power plant, in Tucson, Arizona. Flue gas was used as the main carbon source to control pH, and Chlorella sorokiniana was cultivated. An optimized medium was used to grow the algae. The amount of CO2 added to the system as a function of time was closely monitored. Additionally, other physicochemical factors affecting algal growth rate, biomass productivity, and carbon fixation were monitored, including optical density, dissolved oxygen (DO), electroconductivity (EC), and air and pond temperatures. The results indicate that a microalgae yield of up to 0.385 g/L ash-free dry weight is attainable, with a lipid content of 24%. Leveraging synergistic opportunities between CO2 emitters and algal farmers can provide the resources required to increase carbon capture while supporting the sustainable production of algal biofuels and bioproducts.

摘要

在美国,二氧化碳(CO₂)排放总量的35%来自电力行业,其中30%是天然气发电产生的。微藻固定CO₂的速度比植物快10到15倍,并能将藻类生物质转化为感兴趣的产品,如生物燃料。因此,本研究提出了一种方案,展示了在美国西南部炎热半干旱气候下微藻养殖与天然气发电厂之间潜在的协同作用。采用先进技术通过绿藻种索氏小球藻增强碳捕获和利用,该绿藻可进一步加工成生物燃料。我们描述了一个涉及半自动开放式跑道池塘的方案,并讨论了其在亚利桑那州图森市图森电力厂测试时的性能结果。使用烟道气作为主要碳源来控制pH值,并培养索氏小球藻。使用优化的培养基来培养藻类。密切监测作为时间函数添加到系统中的CO₂量。此外,还监测了影响藻类生长速率、生物质生产力和碳固定的其他物理化学因素,包括光密度、溶解氧(DO)、电导率(EC)以及空气和池塘温度。结果表明,微藻产量可达0.385克/升无灰干重,脂质含量为24%。利用CO₂排放源与藻类养殖者之间的协同机会,可以提供增加碳捕获所需的资源,同时支持藻类生物燃料和生物产品的可持续生产。

相似文献

5
Efficiency of CO2 fixation by microalgae in a closed raceway pond.微藻在封闭跑道式池塘中固定 CO2 的效率。
Bioresour Technol. 2013 May;136:267-72. doi: 10.1016/j.biortech.2013.03.025. Epub 2013 Mar 13.
6
Biological CO mitigation from coal power plant by Chlorella fusca and Spirulina sp.煤电厂的小球藻和螺旋藻的生物 CO 减排
Bioresour Technol. 2017 Jun;234:472-475. doi: 10.1016/j.biortech.2017.03.066. Epub 2017 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验