Jacobson Christian R, Solti David, Renard David, Yuan Lin, Lou Minghe, Halas Naomi J
Acc Chem Res. 2020 Sep 15;53(9):2020-2030. doi: 10.1021/acs.accounts.0c00419. Epub 2020 Aug 31.
ConspectusAluminum in its nanostructured form is generating increasing interest because of its light-harvesting properties, achieved by excitation of its localized surface plasmon resonance. Compared to traditional plasmonic materials, the coinage metals Au and Ag, Al is far more earth-abundant and, therefore, more suitable for large-area applications or where cost may be an important factor. Its optical properties are far more flexible than either Au or Ag, supporting plasmon resonances that range from UV wavelengths, through the visible regime, and into the infrared region of the spectrum. However, the chemical synthesis of Al nanocrystals (NCs) of controlled size and shape has historically lagged far behind that of Au and Ag. This is partially due to the high reactivity of Al precursors, which react readily with O, HO, and many reagents used in traditional NC syntheses. The first chemical synthesis of Al NCs was demonstrated by Haber and Buhro in 1998, decomposing AlH using titanium isopropoxide (TIP), with a number of subsequent reports refining this protocol. The role of a catalyst in Al NC synthesis is, we believe, unique to this synthetic approach. In 2015, the first synthesis of size controlled Al NCs was published by our group. Since then, we have significantly advanced Al NC synthesis, postsynthetic modifications, and applications of Al nanoparticles (NPs)-NCs with additional surface modifications-in chemical sensing and photocatalysis. Colloidal Al synthesis has its unique challenges, differing markedly from the far more familiar Au and Ag syntheses, which currently appears to present a de facto barrier to broader research activity in this field.The goal of this Account is to highlight developments in controlled synthesis of Al NCs and applications of Al NPs over the last five years. We outline techniques for successful Al NC synthesis and address some of the problems that may be encountered in this synthesis. A mechanistic understanding of AlH decomposition using TIP has been developed, while new directions have been discovered for synthetic control. Facet-binding ligands, alternate Al precursors, new titanium-based reduction catalysts, even solvent composition have all been shown to control reaction products while also opening doors to future developments. A variety of postsynthetic modifications to the Al NC native oxide surface, including polymer, MOF, and transition metal island coatings have been demonstrated for applications in molecular sensing and photocatalysis. In this Account, we hope to convey that Al synthesis is more accessible than generally perceived and to encourage new synthetic development based on underlying mechanisms controlling size and shape. High selectivity in particle faceting and twinning, implementation of seeded growth principles for monodisperse samples, and the demonstration of new, practical applications of Al nanoparticles remain primary challenges in the field. As Al nanoparticle synthesis is refined and new applications emerge, colloidal Al will become an accessible and low-cost plasmonic nanomaterial complementary to Au and Ag.
概述
纳米结构形式的铝因其通过局域表面等离子体共振激发而具有的光捕获特性,正引起越来越多的关注。与传统的等离子体材料,即贵金属金和银相比,铝在地壳中的含量要丰富得多,因此更适合大面积应用或成本可能是重要因素的情况。其光学特性比金或银更加灵活,支持从紫外波长到可见光范围再到光谱红外区域的等离子体共振。然而,在历史上,尺寸和形状可控的铝纳米晶体(NCs)的化学合成远远落后于金和银。部分原因是铝前驱体的高反应性,它很容易与氧、水以及传统NC合成中使用的许多试剂发生反应。1998年,哈伯和布罗首次证明了铝NCs的化学合成,他们使用异丙醇钛(TIP)分解氢化铝,随后有许多报告对该方法进行了改进。我们认为,催化剂在铝NC合成中的作用是这种合成方法所独有的。2015年,我们小组发表了第一篇尺寸可控的铝NCs的合成报告。从那时起,我们在铝NC合成、合成后修饰以及具有额外表面修饰的铝纳米颗粒(NPs)-NCs在化学传感和光催化方面的应用上取得了显著进展。胶体铝的合成有其独特的挑战,与更为人熟知的金和银的合成有显著不同,这目前似乎成为了该领域更广泛研究活动的一个实际障碍。
本综述的目的是突出过去五年中铝NCs的可控合成以及铝NPs的应用方面的进展。我们概述了成功合成铝NCs的技术,并解决了该合成过程中可能遇到的一些问题。已经对使用TIP分解氢化铝的机理有了一定的理解,同时也发现了合成控制的新方向。面结合配体、替代铝前驱体、新型钛基还原催化剂,甚至溶剂组成都已被证明可以控制反应产物,同时也为未来的发展打开了大门。已经证明了对铝NC天然氧化物表面进行多种合成后修饰,包括聚合物、金属有机框架(MOF)和过渡金属岛涂层,可用于分子传感和光催化应用。在本综述中,我们希望传达出铝的合成比一般认为的更容易实现,并鼓励基于控制尺寸和形状的潜在机制进行新的合成开发。在颗粒刻面和孪晶方面的高选择性、实现单分散样品的种子生长原理以及展示铝纳米颗粒的新的实际应用仍然是该领域的主要挑战。随着铝纳米颗粒合成的完善和新应用的出现,胶体铝将成为一种可获取且低成本的等离子体纳米材料,与金和银形成互补。