RBG Labs, Department of Engineering Design, IIT Madras, Chennai, India.
Int J Inj Contr Saf Promot. 2020 Dec;27(4):482-492. doi: 10.1080/17457300.2020.1812669. Epub 2020 Aug 31.
Though bicycle as a mode of transport has many environmental and societal benefits as well as health benefits, bicyclists are one of the most vulnerable road users. According to the report by the Ministry of Road Transport and Highways (MoRTH, 2017), there is a sharp increase in the number of fatal victims in respect of bicyclists in 2017 over 2016. The number of cyclists killed jumped from 2585 in 2016 to 3559 in 2017, a 37.7% increase. In the present study, we present the analysis of the effect of the crash, geometric, environmental and cyclist characteristics on the bicycle-vehicle involved collisions by using the crash dataset of nine years (2009-2017) from Tamilnadu RADMS (Road Accident Data Management System) database with the application of fast and frugal tree (FFT) heuristic algorithm. The complete dataset (9978 crashes) was divided into two separate datasets: training data (6984 crashes) for the development of model and testing data (2984 crashes) for the performance evaluation. FFT algorithm identifies five major hues or variable attributes that influence the severity of bicycle crashes. The five major hues include the number of lanes, road separation, intersection, colliding vehicle type and road category. From the results of the present study, FFT acts as a complementary tool to other complex machine learning algorithms such as support vector machines, random forest, logistic regression and CART. The findings of the present study provide important insights for reducing the severity of bicycle-involved crashes at the planning and operations levels.
虽然自行车作为一种交通工具具有许多环境和社会效益以及健康益处,但骑自行车的人是最脆弱的道路使用者之一。根据道路运输和公路部(MoRTH,2017 年)的报告,2017 年与 2016 年相比,自行车手的致命受害者人数急剧增加。2016 年死亡的自行车手人数为 2585 人,2017 年跃升至 3559 人,增长了 37.7%。在本研究中,我们使用来自泰米尔纳德邦 RADMS(道路事故数据管理系统)数据库的九年(2009-2017 年)的碰撞数据集,通过使用快速和节俭树(FFT)启发式算法,分析了碰撞、几何、环境和骑车人特征对涉及自行车的车辆碰撞的影响。完整的数据集(9978 起事故)分为两个单独的数据集:用于开发模型的训练数据(6984 起事故)和用于性能评估的测试数据(2984 起事故)。FFT 算法确定了影响自行车事故严重程度的五个主要色调或变量属性。这五个主要色调包括车道数量、道路分隔、交叉口、碰撞车辆类型和道路类型。本研究的结果表明,FFT 是支持向量机、随机森林、逻辑回归和 CART 等其他复杂机器学习算法的补充工具。本研究的结果为在规划和运营层面减少涉及自行车的事故严重程度提供了重要的见解。