Suppr超能文献

利用潜在类别聚类方法探索印度自行车-机动车事故的严重程度。

Exploring the severity of bicycle-vehicle crashes using latent class clustering approach in India.

机构信息

RBG lab, Department of Engineering Design, IIT Madras, Chennai 600036, India.

RBG lab, Department of Engineering Design, IIT Madras, Chennai 600036, India.

出版信息

J Safety Res. 2020 Feb;72:127-138. doi: 10.1016/j.jsr.2019.12.012. Epub 2019 Dec 31.

Abstract

INTRODUCTION

Bicyclists are vulnerable users in the shared asset like roadways. However, people still prefer to use bicycles for environmental, societal, and health benefits. In India, the bicycle plays a role in supporting the mobility to more people at lower cost and are often associated with the urban poor. Bicyclists represents one of the road user categories with highest risk of injuries and fatalities. According to the report by the Ministry of Road Transport and Highways (Accidents, 2017) in India, there is a sharp increase in the number of fatal victims for bicyclists in 2017 over 2016. The number of cyclists killed jumped from 2,585 in 2016 to 3,559 in 2017, a 37.7% increase.

METHOD

Few studies have only investigated the crash risk perceived by the bicyclists while interacting with other road users. The present paper investigates the injury severity of bicyclists in bicycle-vehicle crashes that occurred in the state of Tamilnadu, India during the nine year period (2009-2017). The analyses demonstrate that dividing bicycle-vehicle collision data into five clusters helps in reducing the systematic heterogeneity present in the data and identify the hidden relationship between the injury severity levels of bicyclists and cyclists demographics, vehicle, environmental, temporal cause for the crashes.

RESULTS

Latent Class Clustering (LCC) approach was used in the present study as a preliminary tool for the segmentation of 9,978 crashes. Later, logistic regression analysis was used to identify the factors that influence bicycle crash severity for the whole dataset as well as for the clusters that were obtained from the LCC model. Results of this study show that combined use of both techniques reveals further information that wouldn't be obtained without prior segmentation of the data. Few variables such as season, weather conditions, and light conditions were significant for certain clusters that were hidden in the whole dataset. This study can help domain experts or traffic safety researchers to segment traffic crashes and develop targeted countermeasures to mitigate injury severity.

摘要

引言

自行车使用者在道路等共享资源中属于弱势使用者。然而,人们仍然出于环保、社会和健康等方面的原因而选择自行车出行。在印度,自行车以低成本为更多人提供了出行支持,且通常与城市贫困人口相关联。自行车使用者是受伤和死亡风险最高的道路使用者之一。根据印度道路运输和公路部(事故报告,2017 年)的数据,2017 年印度自行车使用者的致命事故数量比 2016 年大幅增加。2016 年有 2585 名骑自行车的人死亡,2017 年增至 3559 人,增幅达 37.7%。

方法

仅有少数研究调查了自行车使用者与其他道路使用者互动时感知到的碰撞风险。本文调查了印度泰米尔纳德邦在 9 年期间(2009-2017 年)发生的自行车-车辆碰撞事故中自行车使用者的受伤严重程度。分析表明,将自行车-车辆碰撞数据分为五个聚类有助于减少数据中存在的系统异质性,并确定自行车使用者的受伤严重程度与骑车人人口统计学、车辆、环境、事故发生的时间原因之间隐藏的关系。

结果

本研究使用潜在类别聚类(LCC)方法作为 9978 起事故的初步分割工具。之后,使用逻辑回归分析确定了影响整个数据集以及从 LCC 模型获得的聚类自行车碰撞严重程度的因素。研究结果表明,这两种技术的结合使用可以揭示更多的信息,而无需事先对数据进行分割。一些变量,如季节、天气条件和光照条件,对某些聚类是重要的,而这些聚类在整个数据集中是隐藏的。这项研究可以帮助领域专家或交通安全研究人员对交通碰撞进行细分,并制定有针对性的措施来减轻受伤严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验