Suppr超能文献

建模人类在跌倒后恢复平衡时的神经力学:连续时间方法。

Modeling the neuro-mechanics of human balance when recovering from a fall: a continuous-time approach.

机构信息

Faculty of Engineering, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.

Faculty of Engineering, CONACyT-Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.

出版信息

Biomed Eng Online. 2020 Aug 31;19(1):67. doi: 10.1186/s12938-020-00811-1.

Abstract

BACKGROUND

Balance control deteriorates with age and nearly 30% of the elderly population in the United States reports stability problems. Postural stability is an integral task to daily living reliant upon the control of the ankle and hip. To this end, the estimation of joint parameters can be a useful tool when analyzing compensatory actions aimed at maintaining postural stability.

METHODS

Using an analytical approach, this study expands on previous work and analyzes a two degrees of freedom human model. The first two modes of vibration of the system are represented by the neuro-mechanical parameters of a second-order, time-varying Kelvin-Voigt model actuated at the ankle and hip. The model is tested using a custom double inverted pendulum and healthy volunteers who were subjected to a positional step-like perturbation during quiet standing. An in silico sensitivity analysis of the influence of inertial parameters was also performed.

RESULTS

The proposed method is able to correctly identify the time-varying visco-elastic parameters of of a double inverted pendulum. We show that that the parameter estimation method can be applied to standing humans. These results appear to identify a subject-independent strategy to control quiet standing that combines both the modulation of stiffness, and the use of an intermittent control.

CONCLUSIONS

This paper presents the analysis of the non-linear system of differential equations representing the control of lumped muscle-tendon units. It utilizes motion capture measurements to obtain the estimates of the system's control parameters by constructing a simple time-dependent regressor for estimating the time-varying parameters of the control with a single perturbation. This work is a step forward into the understanding of the neuro-mechanical control parameters of human recovering from a fall. In previous literature, the analysis is either restricted to the first vibrational mode of an inverted-pendulum model or assumed to be time-invariant. The proposed method allows for the analysis of hip related movement for stability control and highlights the importance of core training.

摘要

背景

随着年龄的增长,平衡控制能力会下降,美国近 30%的老年人报告存在稳定性问题。姿势稳定性是日常生活的一个基本任务,依赖于脚踝和臀部的控制。为此,估计关节参数在分析旨在维持姿势稳定性的补偿动作时可能是一个有用的工具。

方法

本研究采用分析方法,扩展了以前的工作,并分析了一个两自由度人体模型。系统的前两个振动模态由踝关节和髋关节的二阶时变 Kelvin-Voigt 模型的神经机械参数表示。该模型使用定制的双倒立摆和健康志愿者进行测试,他们在安静站立时受到位置阶跃式扰动。还对惯性参数的影响进行了虚拟灵敏度分析。

结果

所提出的方法能够正确识别双倒立摆的时变粘弹性参数。我们表明,参数估计方法可应用于站立的人。这些结果似乎确定了一种独立于个体的控制安静站立的策略,该策略结合了刚度的调制和间歇控制的使用。

结论

本文介绍了对代表肌肉肌腱单元集中控制的非线性微分方程组的分析。它利用运动捕捉测量来获得系统控制参数的估计,通过构建一个简单的时变回归器来估计控制的时变参数,该回归器仅使用单个扰动。这项工作是理解从跌倒中恢复的人类神经机械控制参数的一个进步。在以前的文献中,分析要么局限于倒立摆模型的第一振动模态,要么假设为时不变。所提出的方法允许对与臀部相关的运动进行分析,以进行稳定性控制,并强调了核心训练的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d47/7457816/92ed031f98c9/12938_2020_811_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验