Suppr超能文献

SNS-CF:用于目标跟踪的具有空间语义相关特征的连体网络。

SNS-CF: Siamese Network with Spatially Semantic Correlation Features for Object Tracking.

作者信息

Ntwari Thierry, Park Hasil, Shin Joongchol, Paik Joonki

机构信息

Graduate School of Advanced Imaging Science, Multimedia and Film, Chung-Ang University, Seoul 06974, Korea.

出版信息

Sensors (Basel). 2020 Aug 28;20(17):4881. doi: 10.3390/s20174881.

Abstract

Recent advances in object tracking based on deep Siamese networks shifted the attention away from correlation filters. However, the Siamese network alone does not have as high accuracy as state-of-the-art correlation filter-based trackers, whereas correlation filter-based trackers alone have a frame update problem. In this paper, we present a Siamese network with spatially semantic correlation features (SNS-CF) for accurate, robust object tracking. To deal with various types of features spread in many regions of the input image frame, the proposed SNS-CF consists of-(1) a Siamese feature extractor, (2) a spatially semantic feature extractor, and (3) an adaptive correlation filter. To the best of authors knowledge, the proposed SNS-CF is the first attempt to fuse the Siamese network and the correlation filter to provide high frame rate, real-time visual tracking with a favorable tracking performance to the state-of-the-art methods in multiple benchmarks.

摘要

基于深度孪生网络的目标跟踪技术的最新进展,使人们的注意力从相关滤波器转移开来。然而,仅孪生网络的精度不如基于相关滤波器的最先进跟踪器,而仅基于相关滤波器的跟踪器存在帧更新问题。在本文中,我们提出了一种具有空间语义相关特征(SNS-CF)的孪生网络,用于精确、鲁棒的目标跟踪。为了处理在输入图像帧的许多区域中分布的各种类型的特征,所提出的SNS-CF由(1)一个孪生特征提取器、(2)一个空间语义特征提取器和(3)一个自适应相关滤波器组成。据作者所知,所提出的SNS-CF是首次尝试将孪生网络和相关滤波器融合,以提供高帧率、实时视觉跟踪,并在多个基准测试中具有优于现有方法的跟踪性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2488/7506687/8e71e4a961a9/sensors-20-04881-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验